Cargando…
Enhancing Image Quality via Robust Noise Filtering Using Redescending M-Estimators
In the field of image processing, noise represents an unwanted component that can occur during signal acquisition, transmission, and storage. In this paper, we introduce an efficient method that incorporates redescending M-estimators within the framework of Wiener estimation. The proposed approach e...
Autores principales: | Rendón-Castro, Ángel Arturo, Mújica-Vargas, Dante, Luna-Álvarez, Antonio, Vianney Kinani, Jean Marie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453315/ https://www.ncbi.nlm.nih.gov/pubmed/37628207 http://dx.doi.org/10.3390/e25081176 |
Ejemplares similares
-
Clustering with position-specific constraints on variance: Applying redescending M-estimators to label-free LC-MS data analysis
por: Frühwirth, Rudolf, et al.
Publicado: (2011) -
Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise
por: Miranda-González, Armando Adrián, et al.
Publicado: (2023) -
Medical Imaging Lesion Detection Based on Unified Gravitational Fuzzy Clustering
por: Vianney Kinani, Jean Marie, et al.
Publicado: (2017) -
A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance
por: Zheng, Binqi, et al.
Publicado: (2018) -
Statistical analysis of noise in MRI: modeling, filtering and estimation
por: Aja-Fernández, Santiago, et al.
Publicado: (2016)