Cargando…
A Maximum Entropy Resolution to the Wine/Water Paradox
The Principle of Indifference (‘PI’: the simplest non-informative prior in Bayesian probability) has been shown to lead to paradoxes since Bertrand (1889). Von Mises (1928) introduced the ‘Wine/Water Paradox’ as a resonant example of a ‘Bertrand paradox’, which has been presented as demonstrating th...
Autores principales: | Parker, Michael C., Jeynes, Chris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453337/ https://www.ncbi.nlm.nih.gov/pubmed/37628271 http://dx.doi.org/10.3390/e25081242 |
Ejemplares similares
-
Maximum Entropy (Most Likely) Double Helical and Double Logarithmic Spiral Trajectories in Space-Time
por: Parker, M. C., et al.
Publicado: (2019) -
Relating a System’s Hamiltonian to Its Entropy Production Using a Complex Time Approach
por: Parker, Michael C., et al.
Publicado: (2023) -
Remarks on the Maximum Entropy Principle with Application to the Maximum Entropy Theory of Ecology
por: Favretti, Marco
Publicado: (2017) -
The maximum entropy method
por: Wu, Nailong
Publicado: (1997) -
On the Entropy and the Maximum Entropy Principle of Uncertain Variables
por: Liu, Yujun, et al.
Publicado: (2023)