Cargando…
Joint Client Selection and CPU Frequency Control in Wireless Federated Learning Networks with Power Constraints
Federated learning (FL) represents a distributed machine learning approach that eliminates the necessity of transmitting privacy-sensitive local training samples. However, within wireless FL networks, resource heterogeneity introduces straggler clients, thereby decelerating the learning process. Add...
Autores principales: | Zhou, Zhaohui, Shi, Shijie, Wang, Fasong, Zhang, Yanbin, Li, Yitong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453361/ https://www.ncbi.nlm.nih.gov/pubmed/37628213 http://dx.doi.org/10.3390/e25081183 |
Ejemplares similares
-
Large CPU-farm implementation in an HEP experiment with tight constraints
por: Brarda, Loic, et al.
Publicado: (2005) -
Trust-Augmented Deep Reinforcement Learning for Federated Learning Client Selection
por: Rjoub, Gaith, et al.
Publicado: (2022) -
Power efficiency of HEP applications on CPU & GPU
por: Tuteja, Keshvi
Publicado: (2023) -
A new federated learning-based wireless communication and client scheduling solution for combating COVID-19
por: Chen, Shuhong, et al.
Publicado: (2023) -
CPU Server
Publicado: (2017)