Cargando…
Communication-Efficient and Privacy-Preserving Verifiable Aggregation for Federated Learning
Federated learning is a distributed machine learning framework, which allows users to save data locally for training without sharing data. Users send the trained local model to the server for aggregation. However, untrusted servers may infer users’ private information from the provided data and mist...
Autores principales: | Peng, Kaixin, Shen, Xiaoying, Gao, Le, Wang, Baocang, Lu, Yichao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453387/ https://www.ncbi.nlm.nih.gov/pubmed/37628155 http://dx.doi.org/10.3390/e25081125 |
Ejemplares similares
-
PLDP-FL: Federated Learning with Personalized Local Differential Privacy
por: Shen, Xiaoying, et al.
Publicado: (2023) -
Federated Learning-Based Insulator Fault Detection for Data Privacy Preserving
por: Luan, Zhirong, et al.
Publicado: (2023) -
Federated learning for preserving data privacy in collaborative
healthcare research
por: Loftus, Tyler J, et al.
Publicado: (2022) -
Privacy-preserving COVID-19 contact tracing solution based on blockchain
por: Liu, Momeng, et al.
Publicado: (2023) -
Homomorphic Encryption-Based Federated Privacy Preservation for Deep Active Learning
por: Kurniawan, Hendra, et al.
Publicado: (2022)