Cargando…
Comparison of Ruptured Intracranial Aneurysms Identification Using Different Machine Learning Algorithms and Radiomics
Different machine learning algorithms have different characteristics and applicability. This study aims to predict ruptured intracranial aneurysms by radiomics models based on different machine learning algorithms and evaluate their differences in the same data condition. A total of 576 patients wit...
Autores principales: | Yang, Beisheng, Li, Wenjie, Wu, Xiaojia, Zhong, Weijia, Wang, Jing, Zhou, Yu, Huang, Tianxing, Zhou, Lu, Zhou, Zhiming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453422/ https://www.ncbi.nlm.nih.gov/pubmed/37627886 http://dx.doi.org/10.3390/diagnostics13162627 |
Ejemplares similares
-
A novel clinical-radscore nomogram for predicting ruptured intracranial aneurysm
por: Li, Wenjie, et al.
Publicado: (2023) -
CT Angiography-Based Radiomics for Classification of Intracranial Aneurysm Rupture
por: Alwalid, Osamah, et al.
Publicado: (2021) -
A two-stage hybrid gene selection algorithm combined with machine learning models to predict the rupture status in intracranial aneurysms
por: Li, Qingqing, et al.
Publicado: (2022) -
Ruptured Intracranial Aneurysms
por: McCaughey, W. T. E.
Publicado: (1956) -
Automatic differentiation of ruptured and unruptured intracranial aneurysms on computed tomography angiography based on deep learning and radiomics
por: Feng, Junbang, et al.
Publicado: (2023)