Cargando…

Quantitative Analysis of Bioactive Compounds in Commercial Teas: Profiling Catechin Alkaloids, Phenolic Acids, and Flavonols Using Targeted Statistical Approaches

Tea, an extensively consumed and globally popular beverage, has diverse chemical compositions that ascertain its quality and categorization. In this investigation, we formulated an analytical and quantification approach employing reversed-phase ultra-high-performance liquid chromatography (UHPLC) me...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Yuan, Lai, Lingling, You, Youli, Gao, Ruizhen, Xiang, Jiaxin, Wang, Guojun, Yu, Wenquan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453493/
https://www.ncbi.nlm.nih.gov/pubmed/37628097
http://dx.doi.org/10.3390/foods12163098
Descripción
Sumario:Tea, an extensively consumed and globally popular beverage, has diverse chemical compositions that ascertain its quality and categorization. In this investigation, we formulated an analytical and quantification approach employing reversed-phase ultra-high-performance liquid chromatography (UHPLC) methodology coupled with diode-array detection (DAD) to precisely quantify 20 principal constituents within 121 tea samples spanning 6 distinct variants. The constituents include alkaloids, catechins, flavonols, and phenolic acids. Our findings delineate that the variances in chemical constitution across dissimilar tea types predominantly hinge upon the intricacies of their processing protocols. Notably, green and yellow teas evinced elevated concentrations of total chemical moieties vis à vis other tea classifications. Remarkably divergent levels of alkaloids, catechins, flavonols, and phenolic acids were ascertained among the disparate tea classifications. By leveraging random forest analysis, we ascertained gallocatechin, epigallocatechin gallate, and epicatechin gallate as pivotal biomarkers for effective tea classification within the principal cadre of tea catechins. Our outcomes distinctly underscore substantial dissimilarities in the specific compounds inherent to varying tea categories, as ascertained via the devised and duly validated approach. The implications of this compositional elucidation serve as a pertinent benchmark for the comprehensive assessment and classification of tea specimens.