Cargando…
Leveraging Deep Learning for IoT Transceiver Identification
With the increasing demand for Internet of Things (IoT) network applications, the lack of adequate identification and authentication has become a significant security concern. Radio frequency fingerprinting techniques, which utilize regular radio traffic as the identification source, were then propo...
Autores principales: | Gao, Jiayao, Fan, Hongfei, Zhao, Yumei, Shi, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453519/ https://www.ncbi.nlm.nih.gov/pubmed/37628220 http://dx.doi.org/10.3390/e25081191 |
Ejemplares similares
-
The proposed hybrid deep learning intrusion prediction IoT (HDLIP-IoT) framework
por: Fadel, Magdy M., et al.
Publicado: (2022) -
Attack-Aware IoT Network Traffic Routing Leveraging Ensemble Learning
por: Abu Al-Haija, Qasem, et al.
Publicado: (2021) -
Machine learning and deep learning approaches in IoT
por: Javed, Abqa, et al.
Publicado: (2023) -
A Secure Long-Range Transceiver for Monitoring and Storing IoT Data in the Cloud: Design and Performance Study
por: Sarkar, Nurul I., et al.
Publicado: (2022) -
Intrusion Detection in IoT Using Deep Learning
por: Banaamah, Alaa Mohammed, et al.
Publicado: (2022)