Cargando…
Optimizing 1D-CNN-Based Emotion Recognition Process through Channel and Feature Selection from EEG Signals
EEG-based emotion recognition has numerous real-world applications in fields such as affective computing, human-computer interaction, and mental health monitoring. This offers the potential for developing IOT-based, emotion-aware systems and personalized interventions using real-time EEG data. This...
Autores principales: | Aldawsari, Haya, Al-Ahmadi, Saad, Muhammad, Farah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453543/ https://www.ncbi.nlm.nih.gov/pubmed/37627883 http://dx.doi.org/10.3390/diagnostics13162624 |
Ejemplares similares
-
Emotion recognition based on EEG features in movie clips with channel selection
por: Özerdem, Mehmet Siraç, et al.
Publicado: (2017) -
Musical Emotions Recognition Using Entropy Features and Channel Optimization Based on EEG
por: Xie, Zun, et al.
Publicado: (2022) -
A Comparative Study of Window Size and Channel Arrangement on EEG-Emotion Recognition Using Deep CNN
por: Keelawat, Panayu, et al.
Publicado: (2021) -
EEG-Based Multi-Modal Emotion Recognition using Bag of Deep Features: An Optimal Feature Selection Approach
por: Asghar, Muhammad Adeel, et al.
Publicado: (2019) -
EEG-based emotion recognition using hybrid CNN and LSTM classification
por: Chakravarthi, Bhuvaneshwari, et al.
Publicado: (2022)