Cargando…

The Constrained-Disorder Principle Assists in Overcoming Significant Challenges in Digital Health: Moving from “Nice to Have” to Mandatory Systems

The success of artificial intelligence depends on whether it can penetrate the boundaries of evidence-based medicine, the lack of policies, and the resistance of medical professionals to its use. The failure of digital health to meet expectations requires rethinking some of the challenges faced. We...

Descripción completa

Detalles Bibliográficos
Autores principales: Hurvitz, Noa, Ilan, Yaron
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453547/
https://www.ncbi.nlm.nih.gov/pubmed/37623270
http://dx.doi.org/10.3390/clinpract13040089
Descripción
Sumario:The success of artificial intelligence depends on whether it can penetrate the boundaries of evidence-based medicine, the lack of policies, and the resistance of medical professionals to its use. The failure of digital health to meet expectations requires rethinking some of the challenges faced. We discuss some of the most significant challenges faced by patients, physicians, payers, pharmaceutical companies, and health systems in the digital world. The goal of healthcare systems is to improve outcomes. Assisting in diagnosing, collecting data, and simplifying processes is a “nice to have” tool, but it is not essential. Many of these systems have yet to be shown to improve outcomes. Current outcome-based expectations and economic constraints make “nice to have,” “assists,” and “ease processes” insufficient. Complex biological systems are defined by their inherent disorder, bounded by dynamic boundaries, as described by the constrained disorder principle (CDP). It provides a platform for correcting systems’ malfunctions by regulating their degree of variability. A CDP-based second-generation artificial intelligence system provides solutions to some challenges digital health faces. Therapeutic interventions are held to improve outcomes with these systems. In addition to improving clinically meaningful endpoints, CDP-based second-generation algorithms ensure patient and physician engagement and reduce the health system’s costs.