Cargando…
An Interpretable Time Series Data Prediction Framework for Severe Accidents in Nuclear Power Plants
Accurately predicting severe accident data in nuclear power plants is of utmost importance for ensuring their safety and reliability. However, existing methods often lack interpretability, thereby limiting their utility in decision making. In this paper, we present an interpretable framework, called...
Autores principales: | Fu, Yongjie, Zhang, Dazhi, Xiao, Yunlong, Wang, Zhihui, Zhou, Huabing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453600/ https://www.ncbi.nlm.nih.gov/pubmed/37628190 http://dx.doi.org/10.3390/e25081160 |
Ejemplares similares
-
An open time-series simulated dataset covering various accidents for nuclear power plants
por: Qi, Ben, et al.
Publicado: (2022) -
Accident analysis for nuclear power plants
por: International Atomic Energy Agency. Vienna
Publicado: (2002) -
Implementation of accident management programmes in nuclear power plants
por: International Atomic Energy Agency. Vienna
Publicado: (2004) -
Accident analysis for nuclear power plants with pressurized water reactors
por: International Atomic Energy Agency. Vienna
Publicado: (2003) -
The 2011 Fukushima nuclear power plant accident
:
how and why it happened
por: Hatamura, Yōtarō, et al.
Publicado: (2015)