Cargando…
On the Entropy and the Maximum Entropy Principle of Uncertain Variables
A new variance formula is developed using the generalized inverse of an increasing function. Based on the variance formula, a new entropy formula for any uncertain variable is provided. Most of the entropy formulas in the literature are special cases of the new entropy formula. Using the new entropy...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453602/ https://www.ncbi.nlm.nih.gov/pubmed/37628224 http://dx.doi.org/10.3390/e25081195 |
_version_ | 1785095977426747392 |
---|---|
author | Liu, Yujun Ma, Guanzhong |
author_facet | Liu, Yujun Ma, Guanzhong |
author_sort | Liu, Yujun |
collection | PubMed |
description | A new variance formula is developed using the generalized inverse of an increasing function. Based on the variance formula, a new entropy formula for any uncertain variable is provided. Most of the entropy formulas in the literature are special cases of the new entropy formula. Using the new entropy formula, the maximum entropy distribution for unimodel entropy of uncertain variables is provided without using the Euler–Lagrange equation. |
format | Online Article Text |
id | pubmed-10453602 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104536022023-08-26 On the Entropy and the Maximum Entropy Principle of Uncertain Variables Liu, Yujun Ma, Guanzhong Entropy (Basel) Article A new variance formula is developed using the generalized inverse of an increasing function. Based on the variance formula, a new entropy formula for any uncertain variable is provided. Most of the entropy formulas in the literature are special cases of the new entropy formula. Using the new entropy formula, the maximum entropy distribution for unimodel entropy of uncertain variables is provided without using the Euler–Lagrange equation. MDPI 2023-08-11 /pmc/articles/PMC10453602/ /pubmed/37628224 http://dx.doi.org/10.3390/e25081195 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Yujun Ma, Guanzhong On the Entropy and the Maximum Entropy Principle of Uncertain Variables |
title | On the Entropy and the Maximum Entropy Principle of Uncertain Variables |
title_full | On the Entropy and the Maximum Entropy Principle of Uncertain Variables |
title_fullStr | On the Entropy and the Maximum Entropy Principle of Uncertain Variables |
title_full_unstemmed | On the Entropy and the Maximum Entropy Principle of Uncertain Variables |
title_short | On the Entropy and the Maximum Entropy Principle of Uncertain Variables |
title_sort | on the entropy and the maximum entropy principle of uncertain variables |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453602/ https://www.ncbi.nlm.nih.gov/pubmed/37628224 http://dx.doi.org/10.3390/e25081195 |
work_keys_str_mv | AT liuyujun ontheentropyandthemaximumentropyprincipleofuncertainvariables AT maguanzhong ontheentropyandthemaximumentropyprincipleofuncertainvariables |