Cargando…
Heuristic Q-learning based on experience replay for three-dimensional path planning of the unmanned aerial vehicle
In order to solve the problem that the existing reinforcement learning algorithm is difficult to converge due to the excessive state space of the three-dimensional path planning of the unmanned aerial vehicle, this article proposes a reinforcement learning algorithm based on the heuristic function a...
Autores principales: | Xie, Ronglei, Meng, Zhijun, Zhou, Yaoming, Ma, Yunpeng, Wu, Zhe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453672/ https://www.ncbi.nlm.nih.gov/pubmed/31829875 http://dx.doi.org/10.1177/0036850419879024 |
Ejemplares similares
-
Complex Environment Path Planning for Unmanned Aerial Vehicles
por: Zhang, Jing, et al.
Publicado: (2021) -
An Improved Equilibrium Optimizer with Application in Unmanned Aerial Vehicle Path Planning
por: Tang, An-Di, et al.
Publicado: (2021) -
Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning
por: Kok, Kai Yit, et al.
Publicado: (2016) -
Heuristics for Two Depot Heterogeneous Unmanned Vehicle Path Planning to Minimize Maximum Travel Cost
por: Bae, Jungyun, et al.
Publicado: (2019) -
Integrated optimization of unmanned aerial vehicle task allocation and path planning under steady wind
por: Luo, He, et al.
Publicado: (2018)