Cargando…
Fault Diagnosis for Rolling Bearing of Combine Harvester Based on Composite-Scale-Variable Dispersion Entropy and Self-Optimization Variational Mode Decomposition Algorithm
Because of the influence of harsh and variable working environments, the vibration signals of rolling bearings for combine harvesters usually show obvious characteristics of strong non-stationarity and nonlinearity. Accomplishing accurate fault diagnosis using these signals for rolling bearings is a...
Autores principales: | Jiang, Wei, Shan, Yahui, Xue, Xiaoming, Ma, Jianpeng, Chen, Zhong, Zhang, Nan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453690/ https://www.ncbi.nlm.nih.gov/pubmed/37628141 http://dx.doi.org/10.3390/e25081111 |
Ejemplares similares
-
Research on Fault Diagnosis of Rolling Bearings Based on Variational Mode Decomposition Improved by the Niche Genetic Algorithm
por: Shi, Ruimin, et al.
Publicado: (2022) -
A Comprehensive Fault Diagnosis Method for Rolling Bearings Based on Refined Composite Multiscale Dispersion Entropy and Fast Ensemble Empirical Mode Decomposition
por: Zhang, Weibo, et al.
Publicado: (2019) -
Fault Diagnosis for Rolling Bearings Using Optimized Variational Mode Decomposition and Resonance Demodulation
por: Zhang, Chunguang, et al.
Publicado: (2020) -
Rolling Bearing Fault Diagnosis Based on Successive Variational Mode Decomposition and the EP Index
por: Guo, Yuanjing, et al.
Publicado: (2022) -
Improved Dynamic Mode Decomposition and Its Application to Fault Diagnosis of Rolling Bearing
por: Dang, Zhang, et al.
Publicado: (2018)