Cargando…
An Ensemble Outlier Detection Method Based on Information Entropy-Weighted Subspaces for High-Dimensional Data
Outlier detection is an important task in the field of data mining and a highly active area of research in machine learning. In industrial automation, datasets are often high-dimensional, meaning an effort to study all dimensions directly leads to data sparsity, thus causing outliers to be masked by...
Autores principales: | Li, Zihao, Zhang, Liumei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453693/ https://www.ncbi.nlm.nih.gov/pubmed/37628215 http://dx.doi.org/10.3390/e25081185 |
Ejemplares similares
-
A novel subspace outlier detection method by entropy-based clustering algorithm
por: Zuo, Zheng, et al.
Publicado: (2023) -
Robust subspace methods for outlier detection in genomic data circumvents the curse of dimensionality
por: Shetta, Omar, et al.
Publicado: (2020) -
Ensemble Linear Subspace Analysis of High-Dimensional Data
por: Ahmed, S. Ejaz, et al.
Publicado: (2021) -
Clutter Subspace Characteristics-Aided Space-Time Adaptive Outlier Sample Selection Method
por: Fu, Dongning, et al.
Publicado: (2021) -
A kernel-based approach for detecting outliers of high-dimensional biological data
por: Oh, Jung Hun, et al.
Publicado: (2009)