Cargando…
Convergence Rates for the Constrained Sampling via Langevin Monte Carlo
Sampling from constrained distributions has posed significant challenges in terms of algorithmic design and non-asymptotic analysis, which are frequently encountered in statistical and machine-learning models. In this study, we propose three sampling algorithms based on Langevin Monte Carlo with the...
Autor principal: | Zhu, Yuanzheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453724/ https://www.ncbi.nlm.nih.gov/pubmed/37628264 http://dx.doi.org/10.3390/e25081234 |
Ejemplares similares
-
Molecular Dynamics, Monte Carlo Simulations, and Langevin Dynamics: A Computational Review
por: Paquet, Eric, et al.
Publicado: (2015) -
Monte Carlo and Quasi-Monte Carlo Sampling
por: Lemieux, Christiane
Publicado: (2009) -
Geometry-informed irreversible perturbations for accelerated convergence of Langevin dynamics
por: Zhang, Benjamin J., et al.
Publicado: (2022) -
Dynamical Sampling with Langevin Normalization Flows
por: Gu, Minghao, et al.
Publicado: (2019) -
Non-Markovian Monte Carlo Algorithm for the Constrained Markovian Evolution in QCD
por: Jadach, S., et al.
Publicado: (2005)