Cargando…
Investigation of the Role of BMP2 and -4 in ASD, VSD and Complex Congenital Heart Disease
Congenital heart malformations (CHMs) make up between 2 and 3% of annual human births. Bone morphogenetic proteins (BMPs) signalling is required for chamber myocardium development. We examined for possible molecular defects in the bone morphogenetic protein 2 and 4 (BMP2, -4) genes by sequencing ana...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453726/ https://www.ncbi.nlm.nih.gov/pubmed/37627976 http://dx.doi.org/10.3390/diagnostics13162717 |
Sumario: | Congenital heart malformations (CHMs) make up between 2 and 3% of annual human births. Bone morphogenetic proteins (BMPs) signalling is required for chamber myocardium development. We examined for possible molecular defects in the bone morphogenetic protein 2 and 4 (BMP2, -4) genes by sequencing analysis of all coding exons, as well as possible transcription or protein expression deregulation by real-time PCR and ELISA, respectively, in 52 heart biopsies with congenital malformations (atrial septal defect (ASD), ventricular septal defect (VSD), tetralogy ofFallot (ToF) and complex cases) compared to 10 non-congenital heart disease (CHD) hearts. No loss of function mutations was found; only synonymous single nucleotide polymorphisms (SNPs) in the BMP2 and BMP4 genes were found. Deregulation of the mRNA expression and co-expression profile of the two genes (BMP2/BMP4) was observed in the affected compared to the normal hearts. BMP2 and -4 protein expression levels were similar in normal and affected hearts. This is the first study assessing the role of BMP-2 and 4 in congenital heart malformations. Our analysis did not reveal molecular defects in the BMP2 and -4 genes that could support a causal relationship with the congenital defects present in our patients. Importantly, sustained mRNA and protein expression of BMP2 and -4 in CHD cases compared to controls indicates possible temporal epigenetic, microRNA or post-transcriptional regulation mechanisms governing the initial stages of cardiac malformation. |
---|