Cargando…
Mammographic Breast Density Model Using Semi-Supervised Learning Reduces Inter-/Intra-Reader Variability
Breast density is an important risk factor for breast cancer development; however, imager inconsistency in density reporting can lead to patient and clinician confusion. A deep learning (DL) model for mammographic density grading was examined in a retrospective multi-reader multi-case study consisti...
Autores principales: | Watanabe, Alyssa T., Retson, Tara, Wang, Junhao, Mantey, Richard, Chim, Chiyung, Karimabadi, Homa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453732/ https://www.ncbi.nlm.nih.gov/pubmed/37627953 http://dx.doi.org/10.3390/diagnostics13162694 |
Ejemplares similares
-
Mammographic density and inter-observer variability of pathologic evaluation of core biopsies among women with mammographic abnormalities
por: Trocchi, Pietro, et al.
Publicado: (2012) -
Mammographic density. Measurement of mammographic density
por: Yaffe, Martin J
Publicado: (2008) -
Mammographic Breast Density in Pakistani Women, Factors Affecting It, and Inter-Observer Variability in Assessment
por: Fatima, Kulsoom, et al.
Publicado: (2021) -
Impact of Reconstruction Algorithms on CT Radiomic Features of Pulmonary Tumors: Analysis of Intra- and Inter-Reader Variability and Inter-Reconstruction Algorithm Variability
por: Kim, Hyungjin, et al.
Publicado: (2016) -
Mammographic density
por: Boyd, Norman F, et al.
Publicado: (2009)