Cargando…
Deep Learning Algorithm for Tumor Segmentation and Discrimination of Clinically Significant Cancer in Patients with Prostate Cancer
Background: We investigated the feasibility of a deep learning algorithm (DLA) based on apparent diffusion coefficient (ADC) maps for the segmentation and discrimination of clinically significant cancer (CSC, Gleason score ≥ 7) from non-CSC in patients with prostate cancer (PCa). Methods: Data from...
Autores principales: | Hong, Sujin, Kim, Seung Ho, Yoo, Byeongcheol, Kim, Joo Yeon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453750/ https://www.ncbi.nlm.nih.gov/pubmed/37623009 http://dx.doi.org/10.3390/curroncol30080528 |
Ejemplares similares
-
Breast MRI Tumor Automatic Segmentation and Triple-Negative Breast Cancer Discrimination Algorithm Based on Deep Learning
por: Guo, Ying-Ying, et al.
Publicado: (2022) -
Radiological semantics discriminate clinically significant grade prostate cancer
por: Li, Qian, et al.
Publicado: (2019) -
Diagnostic Assessment of Deep Learning Algorithms for Frozen Tissue Section Analysis in Women with Breast Cancer
por: Kim, Young-Gon, et al.
Publicado: (2023) -
A deep learning masked segmentation alternative to manual segmentation in biparametric MRI prostate cancer radiomics
por: Bleker, Jeroen, et al.
Publicado: (2022) -
Discrimination of Breast Cancer with Microcalcifications on Mammography by Deep Learning
por: Wang, Jinhua, et al.
Publicado: (2016)