Cargando…
Thermal Evaluation of Silica-Based Insulated Magnet Wires from the Sol–Gel Process
The conventional enameling process used in the fabrication of magnet wires requires harmful processes and products. The target of the industry in the actual context of electrification is to increase the electrical machines’ efficiency. Indeed, the electrical insulation systems (EIS) of an electrical...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453791/ https://www.ncbi.nlm.nih.gov/pubmed/37623074 http://dx.doi.org/10.3390/gels9080619 |
_version_ | 1785096028886663168 |
---|---|
author | Pereira dos Santos Lima, Giovana Ait-Amar, Sonia Velu, Gabriel Frezel, Philippe Boudiba, Abdelhamid Lafqir, Soumaya Nicolay, Arnaud Herze, Pierre-yves Poelman, Mireille |
author_facet | Pereira dos Santos Lima, Giovana Ait-Amar, Sonia Velu, Gabriel Frezel, Philippe Boudiba, Abdelhamid Lafqir, Soumaya Nicolay, Arnaud Herze, Pierre-yves Poelman, Mireille |
author_sort | Pereira dos Santos Lima, Giovana |
collection | PubMed |
description | The conventional enameling process used in the fabrication of magnet wires requires harmful processes and products. The target of the industry in the actual context of electrification is to increase the electrical machines’ efficiency. Indeed, the electrical insulation systems (EIS) of an electrical machine undergo various environmental constraints that can shorten their lifespans. Consequently, aspects of the insulation need to be improved, such as its thermal resistance. One of the challenges is to implement sustainable technology without losing performance. This work consists of the thermal performance evaluation of new magnet wires insulated by three types of composites of silica-based solution from the Sol–gel process and amorphous polyamide-imide (PAI). These composite coats are overcoated by an extruded thermoplastic resin with and without fillers. Different types of insulation are tested and compared to determine the better configuration. Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) analysis, scanning electron microscopy (SEM) analysis, curing characteristics by tangent delta curve, and thermal-aging tests at three temperatures were carried out on the different EIS systems. Dielectric measurements were made between thermal-aging cycles. Their basic mechanical, electrical, and thermal characteristics are promising: the cut-through temperature is situated above 430 °C, their breakdown voltage values are between 5 kV and 9 kV (grade 3), and a good adhesion (overcoming more than 140 turns on a peel test). The thermal-aging results have been consistent with the TGA analysis results. The thermal index following the IEC standards was estimated for the selected EIS, which would have the main basic characteristics of a magnet wire of 200 class; moreover, it would be a greener enameled wire compared to the conventional one. |
format | Online Article Text |
id | pubmed-10453791 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104537912023-08-26 Thermal Evaluation of Silica-Based Insulated Magnet Wires from the Sol–Gel Process Pereira dos Santos Lima, Giovana Ait-Amar, Sonia Velu, Gabriel Frezel, Philippe Boudiba, Abdelhamid Lafqir, Soumaya Nicolay, Arnaud Herze, Pierre-yves Poelman, Mireille Gels Article The conventional enameling process used in the fabrication of magnet wires requires harmful processes and products. The target of the industry in the actual context of electrification is to increase the electrical machines’ efficiency. Indeed, the electrical insulation systems (EIS) of an electrical machine undergo various environmental constraints that can shorten their lifespans. Consequently, aspects of the insulation need to be improved, such as its thermal resistance. One of the challenges is to implement sustainable technology without losing performance. This work consists of the thermal performance evaluation of new magnet wires insulated by three types of composites of silica-based solution from the Sol–gel process and amorphous polyamide-imide (PAI). These composite coats are overcoated by an extruded thermoplastic resin with and without fillers. Different types of insulation are tested and compared to determine the better configuration. Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) analysis, scanning electron microscopy (SEM) analysis, curing characteristics by tangent delta curve, and thermal-aging tests at three temperatures were carried out on the different EIS systems. Dielectric measurements were made between thermal-aging cycles. Their basic mechanical, electrical, and thermal characteristics are promising: the cut-through temperature is situated above 430 °C, their breakdown voltage values are between 5 kV and 9 kV (grade 3), and a good adhesion (overcoming more than 140 turns on a peel test). The thermal-aging results have been consistent with the TGA analysis results. The thermal index following the IEC standards was estimated for the selected EIS, which would have the main basic characteristics of a magnet wire of 200 class; moreover, it would be a greener enameled wire compared to the conventional one. MDPI 2023-07-31 /pmc/articles/PMC10453791/ /pubmed/37623074 http://dx.doi.org/10.3390/gels9080619 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pereira dos Santos Lima, Giovana Ait-Amar, Sonia Velu, Gabriel Frezel, Philippe Boudiba, Abdelhamid Lafqir, Soumaya Nicolay, Arnaud Herze, Pierre-yves Poelman, Mireille Thermal Evaluation of Silica-Based Insulated Magnet Wires from the Sol–Gel Process |
title | Thermal Evaluation of Silica-Based Insulated Magnet Wires from the Sol–Gel Process |
title_full | Thermal Evaluation of Silica-Based Insulated Magnet Wires from the Sol–Gel Process |
title_fullStr | Thermal Evaluation of Silica-Based Insulated Magnet Wires from the Sol–Gel Process |
title_full_unstemmed | Thermal Evaluation of Silica-Based Insulated Magnet Wires from the Sol–Gel Process |
title_short | Thermal Evaluation of Silica-Based Insulated Magnet Wires from the Sol–Gel Process |
title_sort | thermal evaluation of silica-based insulated magnet wires from the sol–gel process |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453791/ https://www.ncbi.nlm.nih.gov/pubmed/37623074 http://dx.doi.org/10.3390/gels9080619 |
work_keys_str_mv | AT pereiradossantoslimagiovana thermalevaluationofsilicabasedinsulatedmagnetwiresfromthesolgelprocess AT aitamarsonia thermalevaluationofsilicabasedinsulatedmagnetwiresfromthesolgelprocess AT velugabriel thermalevaluationofsilicabasedinsulatedmagnetwiresfromthesolgelprocess AT frezelphilippe thermalevaluationofsilicabasedinsulatedmagnetwiresfromthesolgelprocess AT boudibaabdelhamid thermalevaluationofsilicabasedinsulatedmagnetwiresfromthesolgelprocess AT lafqirsoumaya thermalevaluationofsilicabasedinsulatedmagnetwiresfromthesolgelprocess AT nicolayarnaud thermalevaluationofsilicabasedinsulatedmagnetwiresfromthesolgelprocess AT herzepierreyves thermalevaluationofsilicabasedinsulatedmagnetwiresfromthesolgelprocess AT poelmanmireille thermalevaluationofsilicabasedinsulatedmagnetwiresfromthesolgelprocess |