Cargando…

Effects of Quillaja Saponin on Physicochemical Properties of Oil Bodies Recovered from Peony (Paeonia ostii) Seed Aqueous Extract at Different pH

Peony seeds, an important oil resource, have been attracting much attention because of α-linolenic acid. Oil bodies (OBs), naturally pre-emulsified oils, have great potential applications in the food industry. This study investigated the effects of extraction pH and Quillaja saponin (QS) on the phys...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Pengkun, Yang, Ruizhi, Wu, Yingying, Liu, Jiao, Ding, Xiuzhen, Wang, Wentao, Zhao, Luping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453849/
https://www.ncbi.nlm.nih.gov/pubmed/37628016
http://dx.doi.org/10.3390/foods12163017
Descripción
Sumario:Peony seeds, an important oil resource, have been attracting much attention because of α-linolenic acid. Oil bodies (OBs), naturally pre-emulsified oils, have great potential applications in the food industry. This study investigated the effects of extraction pH and Quillaja saponin (QS) on the physicochemical properties of peony oil body (POB) emulsions. POBs were extracted from raw peony milk at pH 4.0, 5.0, 6.0, and 7.0 (named pH 4.0-, 5.0-, 6.0-, and 7.0-POBs). All POBs contained extrinsic proteins and oleosins. The extrinsic proteins of pH 4.0- and pH 5.0-POB were 23 kDa and 38 kDa glycoproteins, the unknown proteins were 48 kDa and 60 kDa, while the 48 kDa and 38 kDa proteins were completely removed under the extraction condition of pH 6.0 and 7.0. The percentage of extrinsic proteins gradually decreased from 78.4% at pH 4.0-POB to 33.88% at pH 7.0-POB, while oleosin contents increased. The particle size and zeta potential of the POB emulsions decreased, whereas the oxidative stability, storage stability, and pI increased with the increasing extraction pH. QS (0.05~0.3%) increased the negative charges of all the POB emulsions, and 0.1% QS significantly improved the dispersion, storage, and the oxidative stability of the POB emulsions. This study provides guidance for selecting the proper conditions for the aqueous extraction of POBs and improving the stability of OB emulsions.