Cargando…
Multi-Task Time Series Forecasting Based on Graph Neural Networks
Accurate time series forecasting is of great importance in real-world scenarios such as health care, transportation, and finance. Because of the tendency, temporal variations, and periodicity of the time series data, there are complex and dynamic dependencies among its underlying features. In time s...
Autores principales: | Han, Xiao, Huang, Yongjie, Pan, Zhisong, Li, Wei, Hu, Yahao, Lin, Gengyou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453913/ https://www.ncbi.nlm.nih.gov/pubmed/37628166 http://dx.doi.org/10.3390/e25081136 |
Ejemplares similares
-
A Graph Neural Network with Spatio-Temporal Attention for Multi-Sources Time Series Data: An Application to Frost Forecast †
por: Lira, Hernan, et al.
Publicado: (2022) -
Neural Networks for Financial Time Series Forecasting
por: Sako, Kady, et al.
Publicado: (2022) -
Spatiotemporal Transformer Neural Network for Time-Series Forecasting
por: You, Yujie, et al.
Publicado: (2022) -
Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting
por: Waheeb, Waddah, et al.
Publicado: (2016) -
Time series forecasting for tuberculosis incidence employing neural network models
por: Orjuela-Cañón, Alvaro David, et al.
Publicado: (2022)