Cargando…

Increased Levels of BAMBI Inhibit Canonical TGF-β Signaling in Chronic Wound Tissues

Chronic wounds affect more than 2% of the population worldwide, with a significant burden on affected individuals, healthcare systems, and societies. A key regulator of the entire wound healing cascade is transforming growth factor beta (TGF-β), which regulates not only inflammation and extracellula...

Descripción completa

Detalles Bibliográficos
Autores principales: Ehnert, Sabrina, Rinderknecht, Helen, Liu, Chao, Voss, Melanie, Konrad, Franziska M., Eisler, Wiebke, Alexander, Dorothea, Ngamsri, Kristian-Christos, Histing, Tina, Rollmann, Mika F., Nussler, Andreas K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453918/
https://www.ncbi.nlm.nih.gov/pubmed/37626905
http://dx.doi.org/10.3390/cells12162095
_version_ 1785096061870669824
author Ehnert, Sabrina
Rinderknecht, Helen
Liu, Chao
Voss, Melanie
Konrad, Franziska M.
Eisler, Wiebke
Alexander, Dorothea
Ngamsri, Kristian-Christos
Histing, Tina
Rollmann, Mika F.
Nussler, Andreas K.
author_facet Ehnert, Sabrina
Rinderknecht, Helen
Liu, Chao
Voss, Melanie
Konrad, Franziska M.
Eisler, Wiebke
Alexander, Dorothea
Ngamsri, Kristian-Christos
Histing, Tina
Rollmann, Mika F.
Nussler, Andreas K.
author_sort Ehnert, Sabrina
collection PubMed
description Chronic wounds affect more than 2% of the population worldwide, with a significant burden on affected individuals, healthcare systems, and societies. A key regulator of the entire wound healing cascade is transforming growth factor beta (TGF-β), which regulates not only inflammation and extracellular matrix formation but also revascularization. This present work aimed at characterizing wound tissues obtained from acute and chronic wounds regarding angiogenesis, inflammation, as well as ECM formation and degradation, to identify common disturbances in the healing process. Serum and wound tissues from 38 patients (N = 20 acute and N = 18 chronic wounds) were analyzed. The patients’ sera suggested a shift from VEGF/VEGFR to ANGPT/TIE2 signaling in the chronic wounds. However, this shift was not confirmed in the wound tissues. Instead, the chronic wound tissues showed increased levels of MMP9, a known activator of TGF-β. However, regulation of TGF-β target genes, such as CTGF, COL1A1, or IL-6, was absent in the chronic wounds. In wound tissues, all three TGF-β isoforms were expressed with increased levels of TGF-β1 and TGF-β3 and a reporter assay confirmed that the expressed TGF-β was activated. However, Western blots and immunostaining showed decreased canonical TGF-β signaling in the respective chronic wound tissues, suggesting the presence of a TGF-β inhibitor. As a potential regulatory mechanism, the TGF-β proteome profiler array suggested elevated levels of the TGF-β pseudo-receptor BAMBI. Also, tissue expression of BAMBI was significantly increased not only in chronic wounds (10.6-fold) but also in acute wounds that had become chronic (9.5-fold). In summary, our data indicate a possible regulatory role of BAMBI in the development of chronic wounds. The available few in vivo studies support our findings by postulating a therapeutic potential of BAMBI for controlling scar formation.
format Online
Article
Text
id pubmed-10453918
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104539182023-08-26 Increased Levels of BAMBI Inhibit Canonical TGF-β Signaling in Chronic Wound Tissues Ehnert, Sabrina Rinderknecht, Helen Liu, Chao Voss, Melanie Konrad, Franziska M. Eisler, Wiebke Alexander, Dorothea Ngamsri, Kristian-Christos Histing, Tina Rollmann, Mika F. Nussler, Andreas K. Cells Article Chronic wounds affect more than 2% of the population worldwide, with a significant burden on affected individuals, healthcare systems, and societies. A key regulator of the entire wound healing cascade is transforming growth factor beta (TGF-β), which regulates not only inflammation and extracellular matrix formation but also revascularization. This present work aimed at characterizing wound tissues obtained from acute and chronic wounds regarding angiogenesis, inflammation, as well as ECM formation and degradation, to identify common disturbances in the healing process. Serum and wound tissues from 38 patients (N = 20 acute and N = 18 chronic wounds) were analyzed. The patients’ sera suggested a shift from VEGF/VEGFR to ANGPT/TIE2 signaling in the chronic wounds. However, this shift was not confirmed in the wound tissues. Instead, the chronic wound tissues showed increased levels of MMP9, a known activator of TGF-β. However, regulation of TGF-β target genes, such as CTGF, COL1A1, or IL-6, was absent in the chronic wounds. In wound tissues, all three TGF-β isoforms were expressed with increased levels of TGF-β1 and TGF-β3 and a reporter assay confirmed that the expressed TGF-β was activated. However, Western blots and immunostaining showed decreased canonical TGF-β signaling in the respective chronic wound tissues, suggesting the presence of a TGF-β inhibitor. As a potential regulatory mechanism, the TGF-β proteome profiler array suggested elevated levels of the TGF-β pseudo-receptor BAMBI. Also, tissue expression of BAMBI was significantly increased not only in chronic wounds (10.6-fold) but also in acute wounds that had become chronic (9.5-fold). In summary, our data indicate a possible regulatory role of BAMBI in the development of chronic wounds. The available few in vivo studies support our findings by postulating a therapeutic potential of BAMBI for controlling scar formation. MDPI 2023-08-18 /pmc/articles/PMC10453918/ /pubmed/37626905 http://dx.doi.org/10.3390/cells12162095 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ehnert, Sabrina
Rinderknecht, Helen
Liu, Chao
Voss, Melanie
Konrad, Franziska M.
Eisler, Wiebke
Alexander, Dorothea
Ngamsri, Kristian-Christos
Histing, Tina
Rollmann, Mika F.
Nussler, Andreas K.
Increased Levels of BAMBI Inhibit Canonical TGF-β Signaling in Chronic Wound Tissues
title Increased Levels of BAMBI Inhibit Canonical TGF-β Signaling in Chronic Wound Tissues
title_full Increased Levels of BAMBI Inhibit Canonical TGF-β Signaling in Chronic Wound Tissues
title_fullStr Increased Levels of BAMBI Inhibit Canonical TGF-β Signaling in Chronic Wound Tissues
title_full_unstemmed Increased Levels of BAMBI Inhibit Canonical TGF-β Signaling in Chronic Wound Tissues
title_short Increased Levels of BAMBI Inhibit Canonical TGF-β Signaling in Chronic Wound Tissues
title_sort increased levels of bambi inhibit canonical tgf-β signaling in chronic wound tissues
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453918/
https://www.ncbi.nlm.nih.gov/pubmed/37626905
http://dx.doi.org/10.3390/cells12162095
work_keys_str_mv AT ehnertsabrina increasedlevelsofbambiinhibitcanonicaltgfbsignalinginchronicwoundtissues
AT rinderknechthelen increasedlevelsofbambiinhibitcanonicaltgfbsignalinginchronicwoundtissues
AT liuchao increasedlevelsofbambiinhibitcanonicaltgfbsignalinginchronicwoundtissues
AT vossmelanie increasedlevelsofbambiinhibitcanonicaltgfbsignalinginchronicwoundtissues
AT konradfranziskam increasedlevelsofbambiinhibitcanonicaltgfbsignalinginchronicwoundtissues
AT eislerwiebke increasedlevelsofbambiinhibitcanonicaltgfbsignalinginchronicwoundtissues
AT alexanderdorothea increasedlevelsofbambiinhibitcanonicaltgfbsignalinginchronicwoundtissues
AT ngamsrikristianchristos increasedlevelsofbambiinhibitcanonicaltgfbsignalinginchronicwoundtissues
AT histingtina increasedlevelsofbambiinhibitcanonicaltgfbsignalinginchronicwoundtissues
AT rollmannmikaf increasedlevelsofbambiinhibitcanonicaltgfbsignalinginchronicwoundtissues
AT nusslerandreask increasedlevelsofbambiinhibitcanonicaltgfbsignalinginchronicwoundtissues