Cargando…

Progressive Thinning of Retinal Nerve Fiber Layer/Ganglion Cell Layer (RNFL/GCL) as Biomarker and Pharmacological Target of Diabetic Retinopathy

Diabetes-driven retinal neurodegeneration has recently been shown to be involved in the initial phases of diabetic retinopathy, raising the possibility of setting up a preventive strategy based on early retinal neuroprotection. To make this possible, it is crucial to identify a biomarker for early r...

Descripción completa

Detalles Bibliográficos
Autores principales: Zerbini, Gianpaolo, Maestroni, Silvia, Viganò, Ilaria, Mosca, Andrea, Paleari, Renata, Gabellini, Daniela, Galbiati, Silvia, Rama, Paolo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10454227/
https://www.ncbi.nlm.nih.gov/pubmed/37628852
http://dx.doi.org/10.3390/ijms241612672
Descripción
Sumario:Diabetes-driven retinal neurodegeneration has recently been shown to be involved in the initial phases of diabetic retinopathy, raising the possibility of setting up a preventive strategy based on early retinal neuroprotection. To make this possible, it is crucial to identify a biomarker for early retinal neurodegeneration. To this end, in this study, we verified and confirmed that, in the Akita mouse model of diabetes, the thinning of the retinal nerve fiber layer/ganglion cell layer (the RNFL/GCL—the layer that contains the retinal ganglion cells) precedes the death of these same cells, suggesting that this dysfunction is a possible biomarker of retinal neurodegeneration. We then confirmed the validity of this assumption by starting a neuroprotective treatment (based on nerve growth factor eye drops) in concert with the first demonstration of RNFL/GCL thinning. In this way, it was possible not only to avoid the loss of retinal ganglion cells but also to prevent the subsequent development of the microvascular stage of diabetic retinopathy. In conclusion, in the case of diabetes, the thinning of the RNFL/GCL appears to be both a valid biomarker and a pharmacological target of diabetic retinopathy; it precedes the development of vascular dysfunctions and represents the ideal starting point for prevention.