Cargando…

Guanosine and Deoxyinosine Structural Analogs Extracted from Chick Early Amniotic Fluid Promote Cutaneous Wound Healing

Wound healing is a complex, dynamic process supported by a myriad of cellular events that must be tightly coordinated to efficiently repair damaged tissue. These wounds are a significant socioeconomic burden due to their high prevalence and recurrence, which is why the phenomenon of wounds has also...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmad, Mashaal, Yu, Jia, Cheng, Sha, Khan, Zara Ahmad, Luo, Yan, Luo, Heng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10454561/
https://www.ncbi.nlm.nih.gov/pubmed/37628998
http://dx.doi.org/10.3390/ijms241612817
_version_ 1785096222679236608
author Ahmad, Mashaal
Yu, Jia
Cheng, Sha
Khan, Zara Ahmad
Luo, Yan
Luo, Heng
author_facet Ahmad, Mashaal
Yu, Jia
Cheng, Sha
Khan, Zara Ahmad
Luo, Yan
Luo, Heng
author_sort Ahmad, Mashaal
collection PubMed
description Wound healing is a complex, dynamic process supported by a myriad of cellular events that must be tightly coordinated to efficiently repair damaged tissue. These wounds are a significant socioeconomic burden due to their high prevalence and recurrence, which is why the phenomenon of wounds has also been labeled as a “Silent Epidemic”. Most of these wounds become “chronic”, with around 15% of them remaining unresolved 1-year post incidence, which results in a prolonged yet avoidable burden to patients, families, and the health system. In this experimental study, we tried to purify the potent components in chick early amniotic fluid (ceAF) and applied these components to the wound healing mechanism. We first subjected ceAF to a series of purifications, including an HPLC purification system along with ion-exchange chromatography technology to purify other potential components. Upon narrowing down, we found two structural analogs: guanosine and deoxyinosine. We performed these components’ cell scratch and trans-well migration assays to validate the accurate dosage. We also assessed these components via topical administration on the skin of murine model wounds. For this, we randomly divided C57BL/6 (all black, male, 5 weeks old) mice into groups. The wound model was established through excising the skin of mice and treated the wounds with different fractions of guanosine and deoxyinosine continuously for 8–10 day intervals. Once the healing was complete, the skin was excised to determine the inflammatory response and other biochemical parameters of the healed skin, including epidermal thickness, collagen density, macrophages, and neutrophil infiltration at the wounded site. Quantitative real-time PCR and immunoblot assays were performed to determine active gene expression and protein expression of proinflammatory molecules, growth factors, and cytokines. All these findings support our data indicating the promising healing properties of guanosine and deoxyinosine isolated from ceAF.
format Online
Article
Text
id pubmed-10454561
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104545612023-08-26 Guanosine and Deoxyinosine Structural Analogs Extracted from Chick Early Amniotic Fluid Promote Cutaneous Wound Healing Ahmad, Mashaal Yu, Jia Cheng, Sha Khan, Zara Ahmad Luo, Yan Luo, Heng Int J Mol Sci Article Wound healing is a complex, dynamic process supported by a myriad of cellular events that must be tightly coordinated to efficiently repair damaged tissue. These wounds are a significant socioeconomic burden due to their high prevalence and recurrence, which is why the phenomenon of wounds has also been labeled as a “Silent Epidemic”. Most of these wounds become “chronic”, with around 15% of them remaining unresolved 1-year post incidence, which results in a prolonged yet avoidable burden to patients, families, and the health system. In this experimental study, we tried to purify the potent components in chick early amniotic fluid (ceAF) and applied these components to the wound healing mechanism. We first subjected ceAF to a series of purifications, including an HPLC purification system along with ion-exchange chromatography technology to purify other potential components. Upon narrowing down, we found two structural analogs: guanosine and deoxyinosine. We performed these components’ cell scratch and trans-well migration assays to validate the accurate dosage. We also assessed these components via topical administration on the skin of murine model wounds. For this, we randomly divided C57BL/6 (all black, male, 5 weeks old) mice into groups. The wound model was established through excising the skin of mice and treated the wounds with different fractions of guanosine and deoxyinosine continuously for 8–10 day intervals. Once the healing was complete, the skin was excised to determine the inflammatory response and other biochemical parameters of the healed skin, including epidermal thickness, collagen density, macrophages, and neutrophil infiltration at the wounded site. Quantitative real-time PCR and immunoblot assays were performed to determine active gene expression and protein expression of proinflammatory molecules, growth factors, and cytokines. All these findings support our data indicating the promising healing properties of guanosine and deoxyinosine isolated from ceAF. MDPI 2023-08-15 /pmc/articles/PMC10454561/ /pubmed/37628998 http://dx.doi.org/10.3390/ijms241612817 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ahmad, Mashaal
Yu, Jia
Cheng, Sha
Khan, Zara Ahmad
Luo, Yan
Luo, Heng
Guanosine and Deoxyinosine Structural Analogs Extracted from Chick Early Amniotic Fluid Promote Cutaneous Wound Healing
title Guanosine and Deoxyinosine Structural Analogs Extracted from Chick Early Amniotic Fluid Promote Cutaneous Wound Healing
title_full Guanosine and Deoxyinosine Structural Analogs Extracted from Chick Early Amniotic Fluid Promote Cutaneous Wound Healing
title_fullStr Guanosine and Deoxyinosine Structural Analogs Extracted from Chick Early Amniotic Fluid Promote Cutaneous Wound Healing
title_full_unstemmed Guanosine and Deoxyinosine Structural Analogs Extracted from Chick Early Amniotic Fluid Promote Cutaneous Wound Healing
title_short Guanosine and Deoxyinosine Structural Analogs Extracted from Chick Early Amniotic Fluid Promote Cutaneous Wound Healing
title_sort guanosine and deoxyinosine structural analogs extracted from chick early amniotic fluid promote cutaneous wound healing
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10454561/
https://www.ncbi.nlm.nih.gov/pubmed/37628998
http://dx.doi.org/10.3390/ijms241612817
work_keys_str_mv AT ahmadmashaal guanosineanddeoxyinosinestructuralanalogsextractedfromchickearlyamnioticfluidpromotecutaneouswoundhealing
AT yujia guanosineanddeoxyinosinestructuralanalogsextractedfromchickearlyamnioticfluidpromotecutaneouswoundhealing
AT chengsha guanosineanddeoxyinosinestructuralanalogsextractedfromchickearlyamnioticfluidpromotecutaneouswoundhealing
AT khanzaraahmad guanosineanddeoxyinosinestructuralanalogsextractedfromchickearlyamnioticfluidpromotecutaneouswoundhealing
AT luoyan guanosineanddeoxyinosinestructuralanalogsextractedfromchickearlyamnioticfluidpromotecutaneouswoundhealing
AT luoheng guanosineanddeoxyinosinestructuralanalogsextractedfromchickearlyamnioticfluidpromotecutaneouswoundhealing