Cargando…
Guanosine and Deoxyinosine Structural Analogs Extracted from Chick Early Amniotic Fluid Promote Cutaneous Wound Healing
Wound healing is a complex, dynamic process supported by a myriad of cellular events that must be tightly coordinated to efficiently repair damaged tissue. These wounds are a significant socioeconomic burden due to their high prevalence and recurrence, which is why the phenomenon of wounds has also...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10454561/ https://www.ncbi.nlm.nih.gov/pubmed/37628998 http://dx.doi.org/10.3390/ijms241612817 |
_version_ | 1785096222679236608 |
---|---|
author | Ahmad, Mashaal Yu, Jia Cheng, Sha Khan, Zara Ahmad Luo, Yan Luo, Heng |
author_facet | Ahmad, Mashaal Yu, Jia Cheng, Sha Khan, Zara Ahmad Luo, Yan Luo, Heng |
author_sort | Ahmad, Mashaal |
collection | PubMed |
description | Wound healing is a complex, dynamic process supported by a myriad of cellular events that must be tightly coordinated to efficiently repair damaged tissue. These wounds are a significant socioeconomic burden due to their high prevalence and recurrence, which is why the phenomenon of wounds has also been labeled as a “Silent Epidemic”. Most of these wounds become “chronic”, with around 15% of them remaining unresolved 1-year post incidence, which results in a prolonged yet avoidable burden to patients, families, and the health system. In this experimental study, we tried to purify the potent components in chick early amniotic fluid (ceAF) and applied these components to the wound healing mechanism. We first subjected ceAF to a series of purifications, including an HPLC purification system along with ion-exchange chromatography technology to purify other potential components. Upon narrowing down, we found two structural analogs: guanosine and deoxyinosine. We performed these components’ cell scratch and trans-well migration assays to validate the accurate dosage. We also assessed these components via topical administration on the skin of murine model wounds. For this, we randomly divided C57BL/6 (all black, male, 5 weeks old) mice into groups. The wound model was established through excising the skin of mice and treated the wounds with different fractions of guanosine and deoxyinosine continuously for 8–10 day intervals. Once the healing was complete, the skin was excised to determine the inflammatory response and other biochemical parameters of the healed skin, including epidermal thickness, collagen density, macrophages, and neutrophil infiltration at the wounded site. Quantitative real-time PCR and immunoblot assays were performed to determine active gene expression and protein expression of proinflammatory molecules, growth factors, and cytokines. All these findings support our data indicating the promising healing properties of guanosine and deoxyinosine isolated from ceAF. |
format | Online Article Text |
id | pubmed-10454561 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104545612023-08-26 Guanosine and Deoxyinosine Structural Analogs Extracted from Chick Early Amniotic Fluid Promote Cutaneous Wound Healing Ahmad, Mashaal Yu, Jia Cheng, Sha Khan, Zara Ahmad Luo, Yan Luo, Heng Int J Mol Sci Article Wound healing is a complex, dynamic process supported by a myriad of cellular events that must be tightly coordinated to efficiently repair damaged tissue. These wounds are a significant socioeconomic burden due to their high prevalence and recurrence, which is why the phenomenon of wounds has also been labeled as a “Silent Epidemic”. Most of these wounds become “chronic”, with around 15% of them remaining unresolved 1-year post incidence, which results in a prolonged yet avoidable burden to patients, families, and the health system. In this experimental study, we tried to purify the potent components in chick early amniotic fluid (ceAF) and applied these components to the wound healing mechanism. We first subjected ceAF to a series of purifications, including an HPLC purification system along with ion-exchange chromatography technology to purify other potential components. Upon narrowing down, we found two structural analogs: guanosine and deoxyinosine. We performed these components’ cell scratch and trans-well migration assays to validate the accurate dosage. We also assessed these components via topical administration on the skin of murine model wounds. For this, we randomly divided C57BL/6 (all black, male, 5 weeks old) mice into groups. The wound model was established through excising the skin of mice and treated the wounds with different fractions of guanosine and deoxyinosine continuously for 8–10 day intervals. Once the healing was complete, the skin was excised to determine the inflammatory response and other biochemical parameters of the healed skin, including epidermal thickness, collagen density, macrophages, and neutrophil infiltration at the wounded site. Quantitative real-time PCR and immunoblot assays were performed to determine active gene expression and protein expression of proinflammatory molecules, growth factors, and cytokines. All these findings support our data indicating the promising healing properties of guanosine and deoxyinosine isolated from ceAF. MDPI 2023-08-15 /pmc/articles/PMC10454561/ /pubmed/37628998 http://dx.doi.org/10.3390/ijms241612817 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ahmad, Mashaal Yu, Jia Cheng, Sha Khan, Zara Ahmad Luo, Yan Luo, Heng Guanosine and Deoxyinosine Structural Analogs Extracted from Chick Early Amniotic Fluid Promote Cutaneous Wound Healing |
title | Guanosine and Deoxyinosine Structural Analogs Extracted from Chick Early Amniotic Fluid Promote Cutaneous Wound Healing |
title_full | Guanosine and Deoxyinosine Structural Analogs Extracted from Chick Early Amniotic Fluid Promote Cutaneous Wound Healing |
title_fullStr | Guanosine and Deoxyinosine Structural Analogs Extracted from Chick Early Amniotic Fluid Promote Cutaneous Wound Healing |
title_full_unstemmed | Guanosine and Deoxyinosine Structural Analogs Extracted from Chick Early Amniotic Fluid Promote Cutaneous Wound Healing |
title_short | Guanosine and Deoxyinosine Structural Analogs Extracted from Chick Early Amniotic Fluid Promote Cutaneous Wound Healing |
title_sort | guanosine and deoxyinosine structural analogs extracted from chick early amniotic fluid promote cutaneous wound healing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10454561/ https://www.ncbi.nlm.nih.gov/pubmed/37628998 http://dx.doi.org/10.3390/ijms241612817 |
work_keys_str_mv | AT ahmadmashaal guanosineanddeoxyinosinestructuralanalogsextractedfromchickearlyamnioticfluidpromotecutaneouswoundhealing AT yujia guanosineanddeoxyinosinestructuralanalogsextractedfromchickearlyamnioticfluidpromotecutaneouswoundhealing AT chengsha guanosineanddeoxyinosinestructuralanalogsextractedfromchickearlyamnioticfluidpromotecutaneouswoundhealing AT khanzaraahmad guanosineanddeoxyinosinestructuralanalogsextractedfromchickearlyamnioticfluidpromotecutaneouswoundhealing AT luoyan guanosineanddeoxyinosinestructuralanalogsextractedfromchickearlyamnioticfluidpromotecutaneouswoundhealing AT luoheng guanosineanddeoxyinosinestructuralanalogsextractedfromchickearlyamnioticfluidpromotecutaneouswoundhealing |