Cargando…
Identification of the Solid Stem Suppressor Gene Su-TdDof in Synthetic Hexaploid Wheat Syn-SAU-117
Lodging is one of the most important factors affecting the high and stable yield of wheat worldwide. Solid-stemmed wheat has higher stem strength and lodging resistance than hollow-stemmed wheat does. There are many solid-stemmed varieties, landraces, and old varieties of durum wheat. However, the t...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10454891/ https://www.ncbi.nlm.nih.gov/pubmed/37629026 http://dx.doi.org/10.3390/ijms241612845 |
Sumario: | Lodging is one of the most important factors affecting the high and stable yield of wheat worldwide. Solid-stemmed wheat has higher stem strength and lodging resistance than hollow-stemmed wheat does. There are many solid-stemmed varieties, landraces, and old varieties of durum wheat. However, the transfer of solid stem genes from durum wheat is suppressed by a suppressor gene located on chromosome 3D in common wheat, and only hollow-stemmed lines have been created. However, synthetic hexaploid wheat can serve as a bridge for transferring solid stem genes from tetraploid wheat to common wheat. In this study, the F(1), F(2), and F(2:3) generations of a cross between solid-stemmed Syn-SAU-119 and semisolid-stemmed Syn-SAU-117 were developed. A single dominant gene, which was tentatively designated Su-TdDof and suppresses stem solidity, was identified in synthetic hexaploid wheat Syn-SAU-117 by using genetic analysis. By using bulked segregant RNA-seq (BSR-seq) analysis, Su-TdDof was mapped to chromosome 7DS and flanked by markers KASP-669 and KASP-1055 within a 4.53 cM genetic interval corresponding to 3.86 Mb and 2.29 Mb physical regions in the Chinese Spring (IWGSC RefSeq v1.1) and Ae. tauschii (AL8/78 v4.0) genomes, respectively, in which three genes related to solid stem development were annotated. Su-TdDof differed from a previously reported solid stem suppressor gene based on its origin and position. Su-TdDof would provide a valuable example for research on the suppression phenomenon. The flanking markers developed in this study might be useful for screening Ae. tauschii accessions with no suppressor gene (Su-TdDof) to develop more synthetic hexaploid wheat lines for the breeding of lodging resistance in wheat and further cloning the suppressor gene Su-TdDof. |
---|