Cargando…
Fully convolutional network-based multi-output model for automatic segmentation of organs at risk in thorax
PURPOSE: To propose a multi-output fully convolutional network (MOFCN) to segment bilateral lung, heart and spinal cord in the planning thoracic computed tomography (CT) slices automatically and simultaneously. METHODS: The MOFCN includes two components: one main backbone and three branches. The mai...
Autores principales: | Zhang, Jie, Yang, Yiwei, Shao, Kainan, Bai, Xue, Fang, Min, Shan, Guoping, Chen, Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10454972/ https://www.ncbi.nlm.nih.gov/pubmed/34053337 http://dx.doi.org/10.1177/00368504211020161 |
Ejemplares similares
-
Fully automatic wound segmentation with deep convolutional neural networks
por: Wang, Chuanbo, et al.
Publicado: (2020) -
Automatic Planning for Nasopharyngeal Carcinoma Based on Progressive
Optimization in RayStation Treatment Planning System
por: Yang, Yiwei, et al.
Publicado: (2020) -
Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks
por: Chen, Liang, et al.
Publicado: (2017) -
A benchmark study of convolutional neural networks in fully automatic segmentation of aortic root
por: Yang, Tingting, et al.
Publicado: (2023) -
Convolutional neural networks for PET functional volume fully automatic segmentation: development and validation in a multi-center setting
por: Iantsen, Andrei, et al.
Publicado: (2021)