Cargando…
Assessing the viability of carious lesions in human identification using STR typing
Human teeth have become a prominent source of DNA for human forensic identification as their biological structure is highly resistant to extreme conditions. Previous forensic identification was mainly dependent on the pulp and the other hard tissues of intact teeth. However, there is high likelihood...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10454973/ https://www.ncbi.nlm.nih.gov/pubmed/33827332 http://dx.doi.org/10.1177/00368504211008054 |
_version_ | 1785096338833145856 |
---|---|
author | Shbair, Mohammed Adnan, Atif Hao, Pang Liu, Yi |
author_facet | Shbair, Mohammed Adnan, Atif Hao, Pang Liu, Yi |
author_sort | Shbair, Mohammed |
collection | PubMed |
description | Human teeth have become a prominent source of DNA for human forensic identification as their biological structure is highly resistant to extreme conditions. Previous forensic identification was mainly dependent on the pulp and the other hard tissues of intact teeth. However, there is high likelihood that only carious teeth can be available for forensic analysis. This study aimed to validate the use of the carious part of the teeth for forensic identification and to compare two DNA extraction methods-the operative technique with the cervical cut technique for human identification using STR typing. The reliability of STR markers in carious part of the teeth was evaluated in 120 carious teeth (60 dental pulp and 60 dentinal carious tissues, respectively) with considerable coverage of gender type and age range to avoid false exclusions. The study was performed on genuine data set where samples have been extracted by proficient dentist during the treatment operation and collected for further analysis. Complete DNA was extracted and the corresponding human identification profile was obtained using the GoldenEye™DNA ID system 20A kit. The operative technique showed a conservative approach to the sampling of carious tissues and allowed safe access to collect carious tissues, whereas the cervical cut technique permitted access to the root canals and complete sampling of the pulp tissues. The findings indicated that there was no significant association between the cervical cut and operative cut techniques (p = 0.165). In addition, there was no statistically significant association between the various teeth types and the obtained profiles observed. The operative technique, by drilling holes on the defected surface of carious human teeth and gentle hand excavation of carious tissues, was indicated to be very efficient, preserving, time-saving, and cost-effective in the recovery of human DNA from carious teeth. The result gives new insights that the carious tissues of human carious teeth might be as valid as the healthy teeth for forensic human identification. |
format | Online Article Text |
id | pubmed-10454973 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-104549732023-08-26 Assessing the viability of carious lesions in human identification using STR typing Shbair, Mohammed Adnan, Atif Hao, Pang Liu, Yi Sci Prog Article Human teeth have become a prominent source of DNA for human forensic identification as their biological structure is highly resistant to extreme conditions. Previous forensic identification was mainly dependent on the pulp and the other hard tissues of intact teeth. However, there is high likelihood that only carious teeth can be available for forensic analysis. This study aimed to validate the use of the carious part of the teeth for forensic identification and to compare two DNA extraction methods-the operative technique with the cervical cut technique for human identification using STR typing. The reliability of STR markers in carious part of the teeth was evaluated in 120 carious teeth (60 dental pulp and 60 dentinal carious tissues, respectively) with considerable coverage of gender type and age range to avoid false exclusions. The study was performed on genuine data set where samples have been extracted by proficient dentist during the treatment operation and collected for further analysis. Complete DNA was extracted and the corresponding human identification profile was obtained using the GoldenEye™DNA ID system 20A kit. The operative technique showed a conservative approach to the sampling of carious tissues and allowed safe access to collect carious tissues, whereas the cervical cut technique permitted access to the root canals and complete sampling of the pulp tissues. The findings indicated that there was no significant association between the cervical cut and operative cut techniques (p = 0.165). In addition, there was no statistically significant association between the various teeth types and the obtained profiles observed. The operative technique, by drilling holes on the defected surface of carious human teeth and gentle hand excavation of carious tissues, was indicated to be very efficient, preserving, time-saving, and cost-effective in the recovery of human DNA from carious teeth. The result gives new insights that the carious tissues of human carious teeth might be as valid as the healthy teeth for forensic human identification. SAGE Publications 2021-04-08 /pmc/articles/PMC10454973/ /pubmed/33827332 http://dx.doi.org/10.1177/00368504211008054 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Article Shbair, Mohammed Adnan, Atif Hao, Pang Liu, Yi Assessing the viability of carious lesions in human identification using STR typing |
title | Assessing the viability of carious lesions in human identification using STR typing |
title_full | Assessing the viability of carious lesions in human identification using STR typing |
title_fullStr | Assessing the viability of carious lesions in human identification using STR typing |
title_full_unstemmed | Assessing the viability of carious lesions in human identification using STR typing |
title_short | Assessing the viability of carious lesions in human identification using STR typing |
title_sort | assessing the viability of carious lesions in human identification using str typing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10454973/ https://www.ncbi.nlm.nih.gov/pubmed/33827332 http://dx.doi.org/10.1177/00368504211008054 |
work_keys_str_mv | AT shbairmohammed assessingtheviabilityofcariouslesionsinhumanidentificationusingstrtyping AT adnanatif assessingtheviabilityofcariouslesionsinhumanidentificationusingstrtyping AT haopang assessingtheviabilityofcariouslesionsinhumanidentificationusingstrtyping AT liuyi assessingtheviabilityofcariouslesionsinhumanidentificationusingstrtyping |