Cargando…

Thangka Image Captioning Based on Semantic Concept Prompt and Multimodal Feature Optimization

Thangka images exhibit a high level of diversity and richness, and the existing deep learning-based image captioning methods generate poor accuracy and richness of Chinese captions for Thangka images. To address this issue, this paper proposes a Semantic Concept Prompt and Multimodal Feature Optimiz...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Wenjin, Qiao, Lang, Kang, Wendong, Shi, Xinyue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10455603/
https://www.ncbi.nlm.nih.gov/pubmed/37623694
http://dx.doi.org/10.3390/jimaging9080162
Descripción
Sumario:Thangka images exhibit a high level of diversity and richness, and the existing deep learning-based image captioning methods generate poor accuracy and richness of Chinese captions for Thangka images. To address this issue, this paper proposes a Semantic Concept Prompt and Multimodal Feature Optimization network (SCAMF-Net). The Semantic Concept Prompt (SCP) module is introduced in the text encoding stage to obtain more semantic information about the Thangka by introducing contextual prompts, thus enhancing the richness of the description content. The Multimodal Feature Optimization (MFO) module is proposed to optimize the correlation between Thangka images and text. This module enhances the correlation between the image features and text features of the Thangka through the Captioner and Filter to more accurately describe the visual concept features of the Thangka. The experimental results demonstrate that our proposed method outperforms baseline models on the Thangka dataset in terms of BLEU-4, METEOR, ROUGE, CIDEr, and SPICE by 8.7%, 7.9%, 8.2%, 76.6%, and 5.7%, respectively. Furthermore, this method also exhibits superior performance compared to the state-of-the-art methods on the public MSCOCO dataset.