Cargando…
In Vitro Models for Improved Therapeutic Interventions in Atrial Fibrillation
Atrial fibrillation is the most common type of cardiac arrhythmias in humans, mostly caused by hyper excitation of specific areas in the atrium resulting in dyssynchronous atrial contractions, leading to severe consequences such as heart failure and stroke. Current therapeutics aim to target this co...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10455620/ https://www.ncbi.nlm.nih.gov/pubmed/37623487 http://dx.doi.org/10.3390/jpm13081237 |
_version_ | 1785096497005592576 |
---|---|
author | Baena-Montes, Jara M. Kraśny, Marcin J. O’Halloran, Martin Dunne, Eoghan Quinlan, Leo R. |
author_facet | Baena-Montes, Jara M. Kraśny, Marcin J. O’Halloran, Martin Dunne, Eoghan Quinlan, Leo R. |
author_sort | Baena-Montes, Jara M. |
collection | PubMed |
description | Atrial fibrillation is the most common type of cardiac arrhythmias in humans, mostly caused by hyper excitation of specific areas in the atrium resulting in dyssynchronous atrial contractions, leading to severe consequences such as heart failure and stroke. Current therapeutics aim to target this condition through both pharmacological and non-pharmacological approaches. To test and validate any of these treatments, an appropriate preclinical model must be carefully chosen to refine and optimise the therapy features to correctly reverse this condition. A broad range of preclinical models have been developed over the years, with specific features and advantages to closely mimic the pathophysiology of atrial fibrillation. In this review, currently available models are described, from traditional animal models and in vitro cell cultures to state-of-the-art organoids and organs-on-a-chip. The advantages, applications and limitations of each model are discussed, providing the information to select the appropriate model for each research application. |
format | Online Article Text |
id | pubmed-10455620 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104556202023-08-26 In Vitro Models for Improved Therapeutic Interventions in Atrial Fibrillation Baena-Montes, Jara M. Kraśny, Marcin J. O’Halloran, Martin Dunne, Eoghan Quinlan, Leo R. J Pers Med Review Atrial fibrillation is the most common type of cardiac arrhythmias in humans, mostly caused by hyper excitation of specific areas in the atrium resulting in dyssynchronous atrial contractions, leading to severe consequences such as heart failure and stroke. Current therapeutics aim to target this condition through both pharmacological and non-pharmacological approaches. To test and validate any of these treatments, an appropriate preclinical model must be carefully chosen to refine and optimise the therapy features to correctly reverse this condition. A broad range of preclinical models have been developed over the years, with specific features and advantages to closely mimic the pathophysiology of atrial fibrillation. In this review, currently available models are described, from traditional animal models and in vitro cell cultures to state-of-the-art organoids and organs-on-a-chip. The advantages, applications and limitations of each model are discussed, providing the information to select the appropriate model for each research application. MDPI 2023-08-08 /pmc/articles/PMC10455620/ /pubmed/37623487 http://dx.doi.org/10.3390/jpm13081237 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Baena-Montes, Jara M. Kraśny, Marcin J. O’Halloran, Martin Dunne, Eoghan Quinlan, Leo R. In Vitro Models for Improved Therapeutic Interventions in Atrial Fibrillation |
title | In Vitro Models for Improved Therapeutic Interventions in Atrial Fibrillation |
title_full | In Vitro Models for Improved Therapeutic Interventions in Atrial Fibrillation |
title_fullStr | In Vitro Models for Improved Therapeutic Interventions in Atrial Fibrillation |
title_full_unstemmed | In Vitro Models for Improved Therapeutic Interventions in Atrial Fibrillation |
title_short | In Vitro Models for Improved Therapeutic Interventions in Atrial Fibrillation |
title_sort | in vitro models for improved therapeutic interventions in atrial fibrillation |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10455620/ https://www.ncbi.nlm.nih.gov/pubmed/37623487 http://dx.doi.org/10.3390/jpm13081237 |
work_keys_str_mv | AT baenamontesjaram invitromodelsforimprovedtherapeuticinterventionsinatrialfibrillation AT krasnymarcinj invitromodelsforimprovedtherapeuticinterventionsinatrialfibrillation AT ohalloranmartin invitromodelsforimprovedtherapeuticinterventionsinatrialfibrillation AT dunneeoghan invitromodelsforimprovedtherapeuticinterventionsinatrialfibrillation AT quinlanleor invitromodelsforimprovedtherapeuticinterventionsinatrialfibrillation |