Cargando…
Fast Compressed Sensing of 3D Radial T(1) Mapping with Different Sparse and Low-Rank Models
Knowledge of the relative performance of the well-known sparse and low-rank compressed sensing models with 3D radial quantitative magnetic resonance imaging acquisitions is limited. We use 3D radial T(1) relaxation time mapping data to compare the total variation, low-rank, and Huber penalty functio...
Autores principales: | Paajanen, Antti, Hanhela, Matti, Hänninen, Nina, Nykänen, Olli, Kolehmainen, Ville, Nissi, Mikko J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10455972/ https://www.ncbi.nlm.nih.gov/pubmed/37623683 http://dx.doi.org/10.3390/jimaging9080151 |
Ejemplares similares
-
Embedded Quantitative MRI T(1ρ) Mapping Using Non-Linear Primal-Dual Proximal Splitting
por: Hanhela, Matti, et al.
Publicado: (2022) -
Data-Driven Regularization Parameter Selection in Dynamic MRI
por: Hanhela, Matti, et al.
Publicado: (2021) -
Quantitative susceptibility mapping of articular cartilage: Ex vivo findings at multiple orientations and following different degradation treatments
por: Nykänen, Olli, et al.
Publicado: (2018) -
New methods for robust continuous wave T(1ρ) relaxation preparation
por: Pala, Swetha, et al.
Publicado: (2022) -
Compressed sensing & sparse filtering
por: Carmi, Avishy Y, et al.
Publicado: (2013)