Cargando…

Influence of Solid Retention Time on Membrane Fouling and Biogas Recovery in Anerobic Membrane Bioreactor Treating Sugarcane Industry Wastewater in Sahelian Climate

Sugarcane industries produce wastewater loaded with various pollutants. For reuse of treated wastewater and valorization of biogas in a Sahelian climatic context, the performance of an anaerobic membrane bioreactor was studied for two solid retention times (40 days and infinity). The pilot was fed w...

Descripción completa

Detalles Bibliográficos
Autores principales: Nouhou Moussa, Abdoul Wahab, Sawadogo, Boukary, Konate, Yacouba, Thianhoun, Brony, Sidibe, Sayon dit Sadio, Heran, Marc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456350/
https://www.ncbi.nlm.nih.gov/pubmed/37623771
http://dx.doi.org/10.3390/membranes13080710
Descripción
Sumario:Sugarcane industries produce wastewater loaded with various pollutants. For reuse of treated wastewater and valorization of biogas in a Sahelian climatic context, the performance of an anaerobic membrane bioreactor was studied for two solid retention times (40 days and infinity). The pilot was fed with real wastewater from a sugarcane operation with an organic load ranging from 15 to 22 gCOD/L/d for 353 days. The temperature in the reactor was maintained at 35 °C. Acclimatization was the first stage during which suspended solids (SS) and volatile suspended solids (VSS) evolved from 9 to 13 g/L and from 5 to 10 g/L respectively, with a VSS/SS ratio of about 80%. While operating the pilot at a solid retention time (SRT) of 40 days, the chemical oxygen demand (COD) removal efficiency reached 85%, and the (VSS)/(TSS) ratio was 94% in the reactor. At infinity solid retention time, these values were 96% and 80%, respectively. The 40-day solid retention time resulted in a change in transmembrane pressure (TMP) from 0.0812 to 2.18 bar, with a maximum methane production of 0.21 L/gCOD removed. These values are lower than those observed at an infinite solid retention time, at which the maximum methane production of 0.29 L/gCOD was achieved, with a corresponding transmembrane pressure variation of up to 3.1 bar. At a shorter solid retention time, the fouling seemed to decrease with biogas production. However, we note interesting retention rates of over 95% for turbidity.