Cargando…
Versatility Investigation of Grown Titanium Dioxide Nanoparticles and Their Comparative Charge Storage for Memristor Devices
Memristive devices have garnered significant attention in the field of electronics over the past few decades. The reason behind this immense interest lies in the ubiquitous nature of memristive dynamics within nanoscale devices, offering the potential for revolutionary applications. These applicatio...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456393/ https://www.ncbi.nlm.nih.gov/pubmed/37630152 http://dx.doi.org/10.3390/mi14081616 |
_version_ | 1785096687447965696 |
---|---|
author | Chakrabartty, Shubhro Almawgani, Abdulkarem H. M. Kumar, Sachin Kumar, Mayank Acharjee, Suvojit Al-Shidaifat, Alaaddin Poulose, Alwin Alsuwian, Turki |
author_facet | Chakrabartty, Shubhro Almawgani, Abdulkarem H. M. Kumar, Sachin Kumar, Mayank Acharjee, Suvojit Al-Shidaifat, Alaaddin Poulose, Alwin Alsuwian, Turki |
author_sort | Chakrabartty, Shubhro |
collection | PubMed |
description | Memristive devices have garnered significant attention in the field of electronics over the past few decades. The reason behind this immense interest lies in the ubiquitous nature of memristive dynamics within nanoscale devices, offering the potential for revolutionary applications. These applications span from energy-efficient memories to the development of physical neural networks and neuromorphic computing platforms. In this research article, the angle toppling technique (ATT) was employed to fabricate titanium dioxide (TiO(2)) nanoparticles with an estimated size of around 10 nm. The nanoparticles were deposited onto a 50 nm SiO(x) thin film (TF), which was situated on an n-type Si substrate. Subsequently, the samples underwent annealing processes at temperatures of 550 °C and 950 °C. The structural studies of the sample were done by field emission gun-scanning electron microscope (FEG-SEM) (JEOL, JSM-7600F). The as-fabricated sample exhibited noticeable clusters of nanoparticles, which were less prominent in the samples annealed at 550 °C and 950 °C. The element composition revealed the presence of titanium (Ti), oxygen (O(2)), and silicon (Si) from the substrate within the samples. X-ray diffraction (XRD) analysis revealed that the as-fabricated sample predominantly consisted of the rutile phase. The comparative studies of charge storage and endurance measurements of as-deposited, 550 °C, and 950 °C annealed devices were carried out, where as-grown device showed promising responses towards brain computing applications. Furthermore, the teaching–learning-based optimization (TLBO) technique was used to conduct further comparisons of results. |
format | Online Article Text |
id | pubmed-10456393 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104563932023-08-26 Versatility Investigation of Grown Titanium Dioxide Nanoparticles and Their Comparative Charge Storage for Memristor Devices Chakrabartty, Shubhro Almawgani, Abdulkarem H. M. Kumar, Sachin Kumar, Mayank Acharjee, Suvojit Al-Shidaifat, Alaaddin Poulose, Alwin Alsuwian, Turki Micromachines (Basel) Article Memristive devices have garnered significant attention in the field of electronics over the past few decades. The reason behind this immense interest lies in the ubiquitous nature of memristive dynamics within nanoscale devices, offering the potential for revolutionary applications. These applications span from energy-efficient memories to the development of physical neural networks and neuromorphic computing platforms. In this research article, the angle toppling technique (ATT) was employed to fabricate titanium dioxide (TiO(2)) nanoparticles with an estimated size of around 10 nm. The nanoparticles were deposited onto a 50 nm SiO(x) thin film (TF), which was situated on an n-type Si substrate. Subsequently, the samples underwent annealing processes at temperatures of 550 °C and 950 °C. The structural studies of the sample were done by field emission gun-scanning electron microscope (FEG-SEM) (JEOL, JSM-7600F). The as-fabricated sample exhibited noticeable clusters of nanoparticles, which were less prominent in the samples annealed at 550 °C and 950 °C. The element composition revealed the presence of titanium (Ti), oxygen (O(2)), and silicon (Si) from the substrate within the samples. X-ray diffraction (XRD) analysis revealed that the as-fabricated sample predominantly consisted of the rutile phase. The comparative studies of charge storage and endurance measurements of as-deposited, 550 °C, and 950 °C annealed devices were carried out, where as-grown device showed promising responses towards brain computing applications. Furthermore, the teaching–learning-based optimization (TLBO) technique was used to conduct further comparisons of results. MDPI 2023-08-16 /pmc/articles/PMC10456393/ /pubmed/37630152 http://dx.doi.org/10.3390/mi14081616 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chakrabartty, Shubhro Almawgani, Abdulkarem H. M. Kumar, Sachin Kumar, Mayank Acharjee, Suvojit Al-Shidaifat, Alaaddin Poulose, Alwin Alsuwian, Turki Versatility Investigation of Grown Titanium Dioxide Nanoparticles and Their Comparative Charge Storage for Memristor Devices |
title | Versatility Investigation of Grown Titanium Dioxide Nanoparticles and Their Comparative Charge Storage for Memristor Devices |
title_full | Versatility Investigation of Grown Titanium Dioxide Nanoparticles and Their Comparative Charge Storage for Memristor Devices |
title_fullStr | Versatility Investigation of Grown Titanium Dioxide Nanoparticles and Their Comparative Charge Storage for Memristor Devices |
title_full_unstemmed | Versatility Investigation of Grown Titanium Dioxide Nanoparticles and Their Comparative Charge Storage for Memristor Devices |
title_short | Versatility Investigation of Grown Titanium Dioxide Nanoparticles and Their Comparative Charge Storage for Memristor Devices |
title_sort | versatility investigation of grown titanium dioxide nanoparticles and their comparative charge storage for memristor devices |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456393/ https://www.ncbi.nlm.nih.gov/pubmed/37630152 http://dx.doi.org/10.3390/mi14081616 |
work_keys_str_mv | AT chakrabarttyshubhro versatilityinvestigationofgrowntitaniumdioxidenanoparticlesandtheircomparativechargestorageformemristordevices AT almawganiabdulkaremhm versatilityinvestigationofgrowntitaniumdioxidenanoparticlesandtheircomparativechargestorageformemristordevices AT kumarsachin versatilityinvestigationofgrowntitaniumdioxidenanoparticlesandtheircomparativechargestorageformemristordevices AT kumarmayank versatilityinvestigationofgrowntitaniumdioxidenanoparticlesandtheircomparativechargestorageformemristordevices AT acharjeesuvojit versatilityinvestigationofgrowntitaniumdioxidenanoparticlesandtheircomparativechargestorageformemristordevices AT alshidaifatalaaddin versatilityinvestigationofgrowntitaniumdioxidenanoparticlesandtheircomparativechargestorageformemristordevices AT poulosealwin versatilityinvestigationofgrowntitaniumdioxidenanoparticlesandtheircomparativechargestorageformemristordevices AT alsuwianturki versatilityinvestigationofgrowntitaniumdioxidenanoparticlesandtheircomparativechargestorageformemristordevices |