Cargando…

The Microscopic Mechanism and Rheological Properties of SBS-Modified Asphalt with Warm Mixing Fast-Melting

To overcome the shortcomings of traditional wet styrene-butadiene-styrene (SBS) modification technology, such as its high energy consumption and thermal decomposition, a warm mix and fast-melting SBS modifier was developed. Based on the theory of rheology, a dynamic shear rheometer (DSR) was applied...

Descripción completa

Detalles Bibliográficos
Autores principales: Huo, Weiguang, Zhuang, Yazhou, Wang, Ziran, Kang, Xiaolong, Wang, Riran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456428/
https://www.ncbi.nlm.nih.gov/pubmed/37629981
http://dx.doi.org/10.3390/ma16165690
Descripción
Sumario:To overcome the shortcomings of traditional wet styrene-butadiene-styrene (SBS) modification technology, such as its high energy consumption and thermal decomposition, a warm mix and fast-melting SBS modifier was developed. Based on the theory of rheology, a dynamic shear rheometer (DSR) was applied to investigate the viscoelastic properties of the warm mix and fast-melting SBS-modified asphalt using a frequency scanning test. Atomic force microscopy (AFM) was used to reveal the modification mechanism of the SBS-modified asphalt. An investigation of the thermal stability of the asphalt binder was conducted using a thermogravimetric test (TG). The results exhibited that the SBS-modified asphalt had good viscoelastic properties, as well as thermal stability. The “bee structure” of the SBS-modified asphalt was finer and more stable. In addition, the adhesion and the Derjaguin–Muller–Toporov (DMT) modulus of the SBS-modified asphalt at a warm mixing speed was higher than that of regular SBS-modified asphalt.