Cargando…
Structural Optimization Design of Microfluidic Chips Based on Fast Sequence Pair Algorithm
The market for microfluidic chips is experiencing significant growth; however, their development is hindered by a complex design process and low efficiency. Enhancing microfluidic chips’ design quality and efficiency has emerged as an integral approach to foster their advancement. Currently, the exi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456452/ https://www.ncbi.nlm.nih.gov/pubmed/37630113 http://dx.doi.org/10.3390/mi14081577 |
_version_ | 1785096702815895552 |
---|---|
author | Wu, Chuang Sun, Jiju Almuaalemi, Haithm Yahya Mohammed Sohan, A. S. M. Muhtasim Fuad Yin, Binfeng |
author_facet | Wu, Chuang Sun, Jiju Almuaalemi, Haithm Yahya Mohammed Sohan, A. S. M. Muhtasim Fuad Yin, Binfeng |
author_sort | Wu, Chuang |
collection | PubMed |
description | The market for microfluidic chips is experiencing significant growth; however, their development is hindered by a complex design process and low efficiency. Enhancing microfluidic chips’ design quality and efficiency has emerged as an integral approach to foster their advancement. Currently, the existing structural design schemes lack careful consideration regarding the impact of chip area, microchannel length, and the number of intersections on chip design. This inadequacy leads to redundant chip structures resulting from the separation of layout and wiring design. This study proposes a structural optimization method for microfluidic chips to address these issues utilizing a simulated annealing algorithm. The simulated annealing algorithm generates an initial solution in advance using the fast sequence pair algorithm. Subsequently, an improved simulated annealing algorithm is employed to obtain the optimal solution for the device layout. During the wiring stage, an advanced wiring method is used to designate the high wiring area, thereby increasing the success rate of microfluidic chip wiring. Furthermore, the connection between layout and routing is reinforced through an improved layout adjustment method, which reduces the length of microchannels and the number of intersections. Finally, the effectiveness of the structural optimization approach is validated through six sets of test cases, successfully achieving the objective of enhancing the design quality of microfluidic chips. |
format | Online Article Text |
id | pubmed-10456452 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104564522023-08-26 Structural Optimization Design of Microfluidic Chips Based on Fast Sequence Pair Algorithm Wu, Chuang Sun, Jiju Almuaalemi, Haithm Yahya Mohammed Sohan, A. S. M. Muhtasim Fuad Yin, Binfeng Micromachines (Basel) Article The market for microfluidic chips is experiencing significant growth; however, their development is hindered by a complex design process and low efficiency. Enhancing microfluidic chips’ design quality and efficiency has emerged as an integral approach to foster their advancement. Currently, the existing structural design schemes lack careful consideration regarding the impact of chip area, microchannel length, and the number of intersections on chip design. This inadequacy leads to redundant chip structures resulting from the separation of layout and wiring design. This study proposes a structural optimization method for microfluidic chips to address these issues utilizing a simulated annealing algorithm. The simulated annealing algorithm generates an initial solution in advance using the fast sequence pair algorithm. Subsequently, an improved simulated annealing algorithm is employed to obtain the optimal solution for the device layout. During the wiring stage, an advanced wiring method is used to designate the high wiring area, thereby increasing the success rate of microfluidic chip wiring. Furthermore, the connection between layout and routing is reinforced through an improved layout adjustment method, which reduces the length of microchannels and the number of intersections. Finally, the effectiveness of the structural optimization approach is validated through six sets of test cases, successfully achieving the objective of enhancing the design quality of microfluidic chips. MDPI 2023-08-10 /pmc/articles/PMC10456452/ /pubmed/37630113 http://dx.doi.org/10.3390/mi14081577 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wu, Chuang Sun, Jiju Almuaalemi, Haithm Yahya Mohammed Sohan, A. S. M. Muhtasim Fuad Yin, Binfeng Structural Optimization Design of Microfluidic Chips Based on Fast Sequence Pair Algorithm |
title | Structural Optimization Design of Microfluidic Chips Based on Fast Sequence Pair Algorithm |
title_full | Structural Optimization Design of Microfluidic Chips Based on Fast Sequence Pair Algorithm |
title_fullStr | Structural Optimization Design of Microfluidic Chips Based on Fast Sequence Pair Algorithm |
title_full_unstemmed | Structural Optimization Design of Microfluidic Chips Based on Fast Sequence Pair Algorithm |
title_short | Structural Optimization Design of Microfluidic Chips Based on Fast Sequence Pair Algorithm |
title_sort | structural optimization design of microfluidic chips based on fast sequence pair algorithm |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456452/ https://www.ncbi.nlm.nih.gov/pubmed/37630113 http://dx.doi.org/10.3390/mi14081577 |
work_keys_str_mv | AT wuchuang structuraloptimizationdesignofmicrofluidicchipsbasedonfastsequencepairalgorithm AT sunjiju structuraloptimizationdesignofmicrofluidicchipsbasedonfastsequencepairalgorithm AT almuaalemihaithmyahyamohammed structuraloptimizationdesignofmicrofluidicchipsbasedonfastsequencepairalgorithm AT sohanasmmuhtasimfuad structuraloptimizationdesignofmicrofluidicchipsbasedonfastsequencepairalgorithm AT yinbinfeng structuraloptimizationdesignofmicrofluidicchipsbasedonfastsequencepairalgorithm |