Cargando…

A Study on Tencel/LMPET–TPU/Triclosan Laminated Membranes: Excellent Water Resistance and Antimicrobial Ability

Medical product contamination has become a threatening issue against human health, which is the main reason why protective nonwoven fabrics have gained considerable attention. In the present, there is a soaring number of studies on establishing protection systems with nonwoven composites via needle...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yue, Lin, Jia-Horng, Cheng, De-Hong, Li, Xing, Wang, Hong-Yang, Lu, Yan-Hua, Lou, Ching-Wen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456457/
https://www.ncbi.nlm.nih.gov/pubmed/37623764
http://dx.doi.org/10.3390/membranes13080703
Descripción
Sumario:Medical product contamination has become a threatening issue against human health, which is the main reason why protective nonwoven fabrics have gained considerable attention. In the present, there is a soaring number of studies on establishing protection systems with nonwoven composites via needle punch. Meanwhile, the disadvantages of composites, such as poor mechanical performance and texture, impose restrictions. Hence, in this study, an eco-friendly method composed of needling, hot pressing, and lamination is applied to produce water-resistant, windproof, and antimicrobial Tencel/low-melting-point polyester-thermoplastic polyurethane/Triclosan (Tencel/LMPET–TPU/TCL) laminated membranes. Field-emission scanning electron microscope (SEM) images and FTIR show needle-punched Tencel/LMPET membranes successfully coated with TPU/TCL laminated membranes, thereby extensively improving nonwoven membranes in terms of water-resistant, windproof, and antimicrobial attributes. Parameters including needle punch depth, content of LMPET fibers, and concentration of TCL are changed during the production. Specifically, Tencel/LMPET–TPU/TCL–0.1 laminated nonwovens acquire good water resistance (100 kPa), outstanding windproof performance (<0.1 cm(3)/cm(2)/s), and good antimicrobial ability against Escherichia coli and Staphylococcus aureus. Made with a green production process that is pollution-free, the proposed products are windproof, water resistant, and antimicrobial, which ensures promising uses in the medical and protective textile fields.