Cargando…
Contour Analysis of Three-Dimensional Peri-Implant Mucosal Model as an Endpoint Analysis of Photofunctionalization Effects on Implant Abutment Materials
Introduction: The objective of this study was to examine the effect of photofunctionalization on the soft-tissue contour formed at the interface of various abutment materials using end-point analyses obtained from the three-dimensional oral mucosal model (3D-OMMs). Methods: Commercially pure titaniu...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456501/ https://www.ncbi.nlm.nih.gov/pubmed/37629819 http://dx.doi.org/10.3390/ma16165529 |
Sumario: | Introduction: The objective of this study was to examine the effect of photofunctionalization on the soft-tissue contour formed at the interface of various abutment materials using end-point analyses obtained from the three-dimensional oral mucosal model (3D-OMMs). Methods: Commercially pure titanium (CPTi), alumina-toughened zirconia (ATZ), and yttria-stabilized zirconia (YSZ) made into discs shapes were classified into two groups: UV-treated (PTx) and non-treated (NTx). The materials in PTx groups were exposed to UV light for 12 min. Human gingival fibroblasts and TR146 epithelial cell lines co-cultured on the acellular dermal membrane were used to construct the 3D-OMM. After 4 days of culture, the discs were inserted into the holes prepared within the membrane of 3D-OMMs. The contour formed by the tissue was evaluated after 14 days of culture. Results: The UV treatment of abutment materials resulted in the formation of more non-pocket-tissue types among the PTx group (p = 0.002). Of all materials tested, soft tissue contour around YSZ showed higher scores for the non-pocket type in both non- and UV-treated groups. Conclusions: The non-pocket type of tissue attachment was frequently found in all surfaces modified by photofunctionalization, particularly zirconia. The 3D-OMM can be used to evaluate the biological endpoints of implant surface modifications. |
---|