Cargando…

A Study of Molecular Dynamic Simulation and Experimental Performance of the Eucommia Ulmoides Gum-Modified Asphalt

In recent years, eucommia ulmoides gum (EUG), also known as gutta-percha, has been extensively researched. Molecular dynamic simulations and experiments were used together to look at how well gutta-percha and asphalt work together and how gutta-percha-modified asphalt works. To investigate the gutta...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Simeng, Guo, Naisheng, Chu, Zhaoyang, Jin, Xin, Fang, Chenze, Yan, Sitong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456603/
https://www.ncbi.nlm.nih.gov/pubmed/37629990
http://dx.doi.org/10.3390/ma16165700
Descripción
Sumario:In recent years, eucommia ulmoides gum (EUG), also known as gutta-percha, has been extensively researched. Molecular dynamic simulations and experiments were used together to look at how well gutta-percha and asphalt work together and how gutta-percha-modified asphalt works. To investigate the gutta-percha and asphalt blending systems, the molecular models of asphalt and various dosages of gutta-percha-modified asphalt were set up using Materials Studio (MS), and the solubility parameters, intermolecular interaction energy, diffusion coefficient, and mechanical properties (including elastic modulus, bulk modulus, and shear modulus) of each system were calculated using molecular dynamic simulations at various temperatures. The findings indicate that EUG and asphalt are compatible, and sulfurized eucommia ulmoides gum (SEUG) and asphalt are more compatible than EUG. However, SEUG-modified asphalt has better mechanical properties than EUG, and the best preparation conditions are 10 wt% doping and 1 h of 180 °C shearing. Primarily, physical modifications are required for gutta-percha-modified asphalt.