Cargando…

Two-Dimensional Theoretical Analysis and Experimental Study of Mass Transfer in a Hollow-Fiber Dialysis Module Coupled with Ultrafiltration Operations

This research theoretically and experimentally develops a hollow-fiber dialysis module coupled with ultrafiltration operations by introducing a trans-membrane pressure during the membrane dialysis process, which can be applied to the waste metabolic end products in the human body for improving the d...

Descripción completa

Detalles Bibliográficos
Autores principales: Ho, Chii-Dong, Tu, Jr-Wei, Chen, Yih-Hang, Chew, Thiam Leng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456604/
https://www.ncbi.nlm.nih.gov/pubmed/37623763
http://dx.doi.org/10.3390/membranes13080702
_version_ 1785096739510812672
author Ho, Chii-Dong
Tu, Jr-Wei
Chen, Yih-Hang
Chew, Thiam Leng
author_facet Ho, Chii-Dong
Tu, Jr-Wei
Chen, Yih-Hang
Chew, Thiam Leng
author_sort Ho, Chii-Dong
collection PubMed
description This research theoretically and experimentally develops a hollow-fiber dialysis module coupled with ultrafiltration operations by introducing a trans-membrane pressure during the membrane dialysis process, which can be applied to the waste metabolic end products in the human body for improving the dialysis efficiency. The solutes were transported by both diffusion and convection from the concentration driving-force gradient between retentate and dialysate phases across the membrane, compared to the traditional dialysis processes by diffusion only. A two-dimensional modeling of such a dialysis-and-ultrafiltration system in the hollow-fiber dialysis module was formulated and solved using the stream function coupled with the perturbation method to obtain the velocity distributions of retentate and dialysate phases, respectively. The purpose of the present work is to investigate the effect of ultrafiltration on the dialysis rate in the hollow-fiber dialyzer with ultrafiltration operations. A highest level of dialysis rate improvement up to about seven times (say 674.65% under [Formula: see text] was found in the module with ultrafiltration rate [Formula: see text] and membrane sieving coefficient [Formula: see text] , compared to that in the system without operating ultrafiltration. Considerable dialysis rate improvements on mass transfer were obtained by implementing a hollow-fiber dialysis-and-ultrafiltration system, instead of using the hollow-fiber dialyzer without ultrafiltration operation. The experimental runs were carried out under the same operating conditions for the hollow-fiber dialyzers of the two experimental runs with and without ultrafiltration operations for comparisons. A very reasonable prediction by the proposed mathematical model was observed.
format Online
Article
Text
id pubmed-10456604
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104566042023-08-26 Two-Dimensional Theoretical Analysis and Experimental Study of Mass Transfer in a Hollow-Fiber Dialysis Module Coupled with Ultrafiltration Operations Ho, Chii-Dong Tu, Jr-Wei Chen, Yih-Hang Chew, Thiam Leng Membranes (Basel) Article This research theoretically and experimentally develops a hollow-fiber dialysis module coupled with ultrafiltration operations by introducing a trans-membrane pressure during the membrane dialysis process, which can be applied to the waste metabolic end products in the human body for improving the dialysis efficiency. The solutes were transported by both diffusion and convection from the concentration driving-force gradient between retentate and dialysate phases across the membrane, compared to the traditional dialysis processes by diffusion only. A two-dimensional modeling of such a dialysis-and-ultrafiltration system in the hollow-fiber dialysis module was formulated and solved using the stream function coupled with the perturbation method to obtain the velocity distributions of retentate and dialysate phases, respectively. The purpose of the present work is to investigate the effect of ultrafiltration on the dialysis rate in the hollow-fiber dialyzer with ultrafiltration operations. A highest level of dialysis rate improvement up to about seven times (say 674.65% under [Formula: see text] was found in the module with ultrafiltration rate [Formula: see text] and membrane sieving coefficient [Formula: see text] , compared to that in the system without operating ultrafiltration. Considerable dialysis rate improvements on mass transfer were obtained by implementing a hollow-fiber dialysis-and-ultrafiltration system, instead of using the hollow-fiber dialyzer without ultrafiltration operation. The experimental runs were carried out under the same operating conditions for the hollow-fiber dialyzers of the two experimental runs with and without ultrafiltration operations for comparisons. A very reasonable prediction by the proposed mathematical model was observed. MDPI 2023-07-27 /pmc/articles/PMC10456604/ /pubmed/37623763 http://dx.doi.org/10.3390/membranes13080702 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ho, Chii-Dong
Tu, Jr-Wei
Chen, Yih-Hang
Chew, Thiam Leng
Two-Dimensional Theoretical Analysis and Experimental Study of Mass Transfer in a Hollow-Fiber Dialysis Module Coupled with Ultrafiltration Operations
title Two-Dimensional Theoretical Analysis and Experimental Study of Mass Transfer in a Hollow-Fiber Dialysis Module Coupled with Ultrafiltration Operations
title_full Two-Dimensional Theoretical Analysis and Experimental Study of Mass Transfer in a Hollow-Fiber Dialysis Module Coupled with Ultrafiltration Operations
title_fullStr Two-Dimensional Theoretical Analysis and Experimental Study of Mass Transfer in a Hollow-Fiber Dialysis Module Coupled with Ultrafiltration Operations
title_full_unstemmed Two-Dimensional Theoretical Analysis and Experimental Study of Mass Transfer in a Hollow-Fiber Dialysis Module Coupled with Ultrafiltration Operations
title_short Two-Dimensional Theoretical Analysis and Experimental Study of Mass Transfer in a Hollow-Fiber Dialysis Module Coupled with Ultrafiltration Operations
title_sort two-dimensional theoretical analysis and experimental study of mass transfer in a hollow-fiber dialysis module coupled with ultrafiltration operations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456604/
https://www.ncbi.nlm.nih.gov/pubmed/37623763
http://dx.doi.org/10.3390/membranes13080702
work_keys_str_mv AT hochiidong twodimensionaltheoreticalanalysisandexperimentalstudyofmasstransferinahollowfiberdialysismodulecoupledwithultrafiltrationoperations
AT tujrwei twodimensionaltheoreticalanalysisandexperimentalstudyofmasstransferinahollowfiberdialysismodulecoupledwithultrafiltrationoperations
AT chenyihhang twodimensionaltheoreticalanalysisandexperimentalstudyofmasstransferinahollowfiberdialysismodulecoupledwithultrafiltrationoperations
AT chewthiamleng twodimensionaltheoreticalanalysisandexperimentalstudyofmasstransferinahollowfiberdialysismodulecoupledwithultrafiltrationoperations