Cargando…
Comparison of Mechanical Properties of Three Tissue Conditioners: An Evaluation In Vitro Study
Introduction: Tissue conditioners have been widely used in various clinical applications in dentistry, such as treating inflamed alveolar ridges, temporarily relining partial and complete dentures, and the acquisition of functional impressions for denture fabrication. This study aimed to investigate...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456693/ https://www.ncbi.nlm.nih.gov/pubmed/37629649 http://dx.doi.org/10.3390/medicina59081359 |
_version_ | 1785096760821022720 |
---|---|
author | Mikulewicz, Marcin Chojnacka, Katarzyna Raszewski, Zbigniew |
author_facet | Mikulewicz, Marcin Chojnacka, Katarzyna Raszewski, Zbigniew |
author_sort | Mikulewicz, Marcin |
collection | PubMed |
description | Introduction: Tissue conditioners have been widely used in various clinical applications in dentistry, such as treating inflamed alveolar ridges, temporarily relining partial and complete dentures, and the acquisition of functional impressions for denture fabrication. This study aimed to investigate the mechanical properties of the most prevalent tissue conditioner materials on the market, including Tissue Conditioners (TC), Visco Gel (VG), and FITT (F). Materials and Methods: The three tissue conditioners, TC, VG, and F, were assessed based on the parameters mentioned above. The following tests were performed based on the ISO 10139-1 and ISO 10139-2 requirements: Shore A hardness, denture plate adhesion, sorption, water solubility, and contraction after 1 and 3 days in water. Additional tests are described in the literature, such as ethanol content and gelling time. The tests were carried out by storing the materials in water at 37 °C for 7 days. Results: The gel times of all tested materials exceeded 5 min (TC = 300 [s], VG = 350 [s]). In vitro, phthalate-free materials exhibited higher dissolution in water after 14 days (VG = −260.78 ± 11.31 µg/mm(2)) compared to F (−76.12 ± 7.11 µg/mm(2)) and experienced faster hardening when stored in distilled water (F = 33.4 ± 0.30 Sh. A, VG = 59.2 ± 0.60 Sh. A). They also showed greater contractions. The connection of all materials to the prosthesis plate was consistent at 0.11 MPa. The highest counterbalance after 3 days was observed in TC = 3.53 ± 1.12%. Conclusions: Materials containing plasticizers that are not phthalates have worse mechanical properties than products containing these substances. Since phthalates are not allowed to be used indefinitely in medical devices, additional research is necessary, especially in vivo, to develop safe materials with superior functional properties to newer-generation alternatives. In vitro results often do not agree fully with those of in vivo outcomes. |
format | Online Article Text |
id | pubmed-10456693 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104566932023-08-26 Comparison of Mechanical Properties of Three Tissue Conditioners: An Evaluation In Vitro Study Mikulewicz, Marcin Chojnacka, Katarzyna Raszewski, Zbigniew Medicina (Kaunas) Article Introduction: Tissue conditioners have been widely used in various clinical applications in dentistry, such as treating inflamed alveolar ridges, temporarily relining partial and complete dentures, and the acquisition of functional impressions for denture fabrication. This study aimed to investigate the mechanical properties of the most prevalent tissue conditioner materials on the market, including Tissue Conditioners (TC), Visco Gel (VG), and FITT (F). Materials and Methods: The three tissue conditioners, TC, VG, and F, were assessed based on the parameters mentioned above. The following tests were performed based on the ISO 10139-1 and ISO 10139-2 requirements: Shore A hardness, denture plate adhesion, sorption, water solubility, and contraction after 1 and 3 days in water. Additional tests are described in the literature, such as ethanol content and gelling time. The tests were carried out by storing the materials in water at 37 °C for 7 days. Results: The gel times of all tested materials exceeded 5 min (TC = 300 [s], VG = 350 [s]). In vitro, phthalate-free materials exhibited higher dissolution in water after 14 days (VG = −260.78 ± 11.31 µg/mm(2)) compared to F (−76.12 ± 7.11 µg/mm(2)) and experienced faster hardening when stored in distilled water (F = 33.4 ± 0.30 Sh. A, VG = 59.2 ± 0.60 Sh. A). They also showed greater contractions. The connection of all materials to the prosthesis plate was consistent at 0.11 MPa. The highest counterbalance after 3 days was observed in TC = 3.53 ± 1.12%. Conclusions: Materials containing plasticizers that are not phthalates have worse mechanical properties than products containing these substances. Since phthalates are not allowed to be used indefinitely in medical devices, additional research is necessary, especially in vivo, to develop safe materials with superior functional properties to newer-generation alternatives. In vitro results often do not agree fully with those of in vivo outcomes. MDPI 2023-07-25 /pmc/articles/PMC10456693/ /pubmed/37629649 http://dx.doi.org/10.3390/medicina59081359 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mikulewicz, Marcin Chojnacka, Katarzyna Raszewski, Zbigniew Comparison of Mechanical Properties of Three Tissue Conditioners: An Evaluation In Vitro Study |
title | Comparison of Mechanical Properties of Three Tissue Conditioners: An Evaluation In Vitro Study |
title_full | Comparison of Mechanical Properties of Three Tissue Conditioners: An Evaluation In Vitro Study |
title_fullStr | Comparison of Mechanical Properties of Three Tissue Conditioners: An Evaluation In Vitro Study |
title_full_unstemmed | Comparison of Mechanical Properties of Three Tissue Conditioners: An Evaluation In Vitro Study |
title_short | Comparison of Mechanical Properties of Three Tissue Conditioners: An Evaluation In Vitro Study |
title_sort | comparison of mechanical properties of three tissue conditioners: an evaluation in vitro study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456693/ https://www.ncbi.nlm.nih.gov/pubmed/37629649 http://dx.doi.org/10.3390/medicina59081359 |
work_keys_str_mv | AT mikulewiczmarcin comparisonofmechanicalpropertiesofthreetissueconditionersanevaluationinvitrostudy AT chojnackakatarzyna comparisonofmechanicalpropertiesofthreetissueconditionersanevaluationinvitrostudy AT raszewskizbigniew comparisonofmechanicalpropertiesofthreetissueconditionersanevaluationinvitrostudy |