Cargando…

A Review on the Analysis of Thermal and Thermodynamic Aspects of Grain Refinement of Aluminum-Silicon-Based Alloys

The present analysis addresses the solidification and thermodynamic parameters involved during the solidification of aluminum (Al)-based alloys as presented in the literature using different systems viz., binary aluminum-boron (Al-B) and aluminum-titanium (Al-Ti) systems, ternary aluminum-titanium-b...

Descripción completa

Detalles Bibliográficos
Autores principales: Samuel, Ehab, Samuel, Agnes M., Songmene, Victor, Samuel, Fawzy H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456725/
https://www.ncbi.nlm.nih.gov/pubmed/37629930
http://dx.doi.org/10.3390/ma16165639
Descripción
Sumario:The present analysis addresses the solidification and thermodynamic parameters involved during the solidification of aluminum (Al)-based alloys as presented in the literature using different systems viz., binary aluminum-boron (Al-B) and aluminum-titanium (Al-Ti) systems, ternary aluminum-titanium-boron (Al-Ti-B) and aluminum-titanium-carbon (Al-Ti-C) systems, as well as taking into consideration the silicon-titanium-aluminide (Si-TiAl(3)) interaction in Al-based alloys containing Si. The analysis is supported by recent metallographic evidence obtained by the authors on A356.2 alloys. The sections on thermodynamic aspects cover the different models proposed concerning nucleation and growth on a newly formed Al grain. The value of the recalescence parameter reduces gradually with the increase in the Ti added. At a level of 0.20 wt%, this parameter becomes zero. If the concentration of grain refiner exceeds a certain amount, the grain size becomes minimal. Another parameter to be considered is the interaction between the grain refiner and traces of other metals in the base alloy. For example, Al-4%B can react with traces of Ti that may exist in the base alloy, leading to the reaction between boron and titanium to form titanium diboride (TiB(2)). Grain refinement is achieved primarily with TiB(2) rather than aluminum diboride (AlB(2)), or both, depending on the Ti content in the given alloy.