Cargando…

Optimal Design of the Austenitic Stainless-Steel Composition Based on Machine Learning and Genetic Algorithm

As the fourth paradigm of materials research and development, the materials genome paradigm can significantly improve the efficiency of research and development for austenitic stainless steel. In this study, by collecting experimental data of austenitic stainless steel, the chemical composition of a...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Chengcheng, Wang, Xuandong, Cai, Weidong, Yang, Jiahui, Su, Hang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456822/
https://www.ncbi.nlm.nih.gov/pubmed/37629924
http://dx.doi.org/10.3390/ma16165633
_version_ 1785096791606165504
author Liu, Chengcheng
Wang, Xuandong
Cai, Weidong
Yang, Jiahui
Su, Hang
author_facet Liu, Chengcheng
Wang, Xuandong
Cai, Weidong
Yang, Jiahui
Su, Hang
author_sort Liu, Chengcheng
collection PubMed
description As the fourth paradigm of materials research and development, the materials genome paradigm can significantly improve the efficiency of research and development for austenitic stainless steel. In this study, by collecting experimental data of austenitic stainless steel, the chemical composition of austenitic stainless steel is optimized by machine learning and a genetic algorithm, so that the production cost is reduced, and the research and development of new steel grades is accelerated without reducing the mechanical properties. Specifically, four machine learning prediction models were established for different mechanical properties, with the gradient boosting regression (gbr) algorithm demonstrating superior prediction accuracy compared to other commonly used machine learning algorithms. Bayesian optimization was then employed to optimize the hyperparameters in the gbr algorithm, resulting in the identification of the optimal combination of hyperparameters. The mechanical properties prediction model established at this stage had good prediction accuracy on the test set (yield strength: R(2) = 0.88, MAE = 4.89 MPa; ultimate tensile strength: R(2) = 0.99, MAE = 2.65 MPa; elongation: R(2) = 0.84, MAE = 1.42%; reduction in area: R(2) = 0.88, MAE = 1.39%). Moreover, feature importance and Shapley Additive Explanation (SHAP) values were utilized to analyze the interpretability of the performance prediction models and to assess how the features influence the overall performance. Finally, the NSGA-III algorithm was used to simultaneously maximize the mechanical property prediction models within the search space, thereby obtaining the corresponding non-dominated solution set of chemical composition and achieving the optimization of austenitic stainless-steel compositions.
format Online
Article
Text
id pubmed-10456822
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104568222023-08-26 Optimal Design of the Austenitic Stainless-Steel Composition Based on Machine Learning and Genetic Algorithm Liu, Chengcheng Wang, Xuandong Cai, Weidong Yang, Jiahui Su, Hang Materials (Basel) Article As the fourth paradigm of materials research and development, the materials genome paradigm can significantly improve the efficiency of research and development for austenitic stainless steel. In this study, by collecting experimental data of austenitic stainless steel, the chemical composition of austenitic stainless steel is optimized by machine learning and a genetic algorithm, so that the production cost is reduced, and the research and development of new steel grades is accelerated without reducing the mechanical properties. Specifically, four machine learning prediction models were established for different mechanical properties, with the gradient boosting regression (gbr) algorithm demonstrating superior prediction accuracy compared to other commonly used machine learning algorithms. Bayesian optimization was then employed to optimize the hyperparameters in the gbr algorithm, resulting in the identification of the optimal combination of hyperparameters. The mechanical properties prediction model established at this stage had good prediction accuracy on the test set (yield strength: R(2) = 0.88, MAE = 4.89 MPa; ultimate tensile strength: R(2) = 0.99, MAE = 2.65 MPa; elongation: R(2) = 0.84, MAE = 1.42%; reduction in area: R(2) = 0.88, MAE = 1.39%). Moreover, feature importance and Shapley Additive Explanation (SHAP) values were utilized to analyze the interpretability of the performance prediction models and to assess how the features influence the overall performance. Finally, the NSGA-III algorithm was used to simultaneously maximize the mechanical property prediction models within the search space, thereby obtaining the corresponding non-dominated solution set of chemical composition and achieving the optimization of austenitic stainless-steel compositions. MDPI 2023-08-15 /pmc/articles/PMC10456822/ /pubmed/37629924 http://dx.doi.org/10.3390/ma16165633 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Liu, Chengcheng
Wang, Xuandong
Cai, Weidong
Yang, Jiahui
Su, Hang
Optimal Design of the Austenitic Stainless-Steel Composition Based on Machine Learning and Genetic Algorithm
title Optimal Design of the Austenitic Stainless-Steel Composition Based on Machine Learning and Genetic Algorithm
title_full Optimal Design of the Austenitic Stainless-Steel Composition Based on Machine Learning and Genetic Algorithm
title_fullStr Optimal Design of the Austenitic Stainless-Steel Composition Based on Machine Learning and Genetic Algorithm
title_full_unstemmed Optimal Design of the Austenitic Stainless-Steel Composition Based on Machine Learning and Genetic Algorithm
title_short Optimal Design of the Austenitic Stainless-Steel Composition Based on Machine Learning and Genetic Algorithm
title_sort optimal design of the austenitic stainless-steel composition based on machine learning and genetic algorithm
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456822/
https://www.ncbi.nlm.nih.gov/pubmed/37629924
http://dx.doi.org/10.3390/ma16165633
work_keys_str_mv AT liuchengcheng optimaldesignoftheausteniticstainlesssteelcompositionbasedonmachinelearningandgeneticalgorithm
AT wangxuandong optimaldesignoftheausteniticstainlesssteelcompositionbasedonmachinelearningandgeneticalgorithm
AT caiweidong optimaldesignoftheausteniticstainlesssteelcompositionbasedonmachinelearningandgeneticalgorithm
AT yangjiahui optimaldesignoftheausteniticstainlesssteelcompositionbasedonmachinelearningandgeneticalgorithm
AT suhang optimaldesignoftheausteniticstainlesssteelcompositionbasedonmachinelearningandgeneticalgorithm