Cargando…
Optimal Design of the Austenitic Stainless-Steel Composition Based on Machine Learning and Genetic Algorithm
As the fourth paradigm of materials research and development, the materials genome paradigm can significantly improve the efficiency of research and development for austenitic stainless steel. In this study, by collecting experimental data of austenitic stainless steel, the chemical composition of a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456822/ https://www.ncbi.nlm.nih.gov/pubmed/37629924 http://dx.doi.org/10.3390/ma16165633 |
_version_ | 1785096791606165504 |
---|---|
author | Liu, Chengcheng Wang, Xuandong Cai, Weidong Yang, Jiahui Su, Hang |
author_facet | Liu, Chengcheng Wang, Xuandong Cai, Weidong Yang, Jiahui Su, Hang |
author_sort | Liu, Chengcheng |
collection | PubMed |
description | As the fourth paradigm of materials research and development, the materials genome paradigm can significantly improve the efficiency of research and development for austenitic stainless steel. In this study, by collecting experimental data of austenitic stainless steel, the chemical composition of austenitic stainless steel is optimized by machine learning and a genetic algorithm, so that the production cost is reduced, and the research and development of new steel grades is accelerated without reducing the mechanical properties. Specifically, four machine learning prediction models were established for different mechanical properties, with the gradient boosting regression (gbr) algorithm demonstrating superior prediction accuracy compared to other commonly used machine learning algorithms. Bayesian optimization was then employed to optimize the hyperparameters in the gbr algorithm, resulting in the identification of the optimal combination of hyperparameters. The mechanical properties prediction model established at this stage had good prediction accuracy on the test set (yield strength: R(2) = 0.88, MAE = 4.89 MPa; ultimate tensile strength: R(2) = 0.99, MAE = 2.65 MPa; elongation: R(2) = 0.84, MAE = 1.42%; reduction in area: R(2) = 0.88, MAE = 1.39%). Moreover, feature importance and Shapley Additive Explanation (SHAP) values were utilized to analyze the interpretability of the performance prediction models and to assess how the features influence the overall performance. Finally, the NSGA-III algorithm was used to simultaneously maximize the mechanical property prediction models within the search space, thereby obtaining the corresponding non-dominated solution set of chemical composition and achieving the optimization of austenitic stainless-steel compositions. |
format | Online Article Text |
id | pubmed-10456822 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104568222023-08-26 Optimal Design of the Austenitic Stainless-Steel Composition Based on Machine Learning and Genetic Algorithm Liu, Chengcheng Wang, Xuandong Cai, Weidong Yang, Jiahui Su, Hang Materials (Basel) Article As the fourth paradigm of materials research and development, the materials genome paradigm can significantly improve the efficiency of research and development for austenitic stainless steel. In this study, by collecting experimental data of austenitic stainless steel, the chemical composition of austenitic stainless steel is optimized by machine learning and a genetic algorithm, so that the production cost is reduced, and the research and development of new steel grades is accelerated without reducing the mechanical properties. Specifically, four machine learning prediction models were established for different mechanical properties, with the gradient boosting regression (gbr) algorithm demonstrating superior prediction accuracy compared to other commonly used machine learning algorithms. Bayesian optimization was then employed to optimize the hyperparameters in the gbr algorithm, resulting in the identification of the optimal combination of hyperparameters. The mechanical properties prediction model established at this stage had good prediction accuracy on the test set (yield strength: R(2) = 0.88, MAE = 4.89 MPa; ultimate tensile strength: R(2) = 0.99, MAE = 2.65 MPa; elongation: R(2) = 0.84, MAE = 1.42%; reduction in area: R(2) = 0.88, MAE = 1.39%). Moreover, feature importance and Shapley Additive Explanation (SHAP) values were utilized to analyze the interpretability of the performance prediction models and to assess how the features influence the overall performance. Finally, the NSGA-III algorithm was used to simultaneously maximize the mechanical property prediction models within the search space, thereby obtaining the corresponding non-dominated solution set of chemical composition and achieving the optimization of austenitic stainless-steel compositions. MDPI 2023-08-15 /pmc/articles/PMC10456822/ /pubmed/37629924 http://dx.doi.org/10.3390/ma16165633 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Chengcheng Wang, Xuandong Cai, Weidong Yang, Jiahui Su, Hang Optimal Design of the Austenitic Stainless-Steel Composition Based on Machine Learning and Genetic Algorithm |
title | Optimal Design of the Austenitic Stainless-Steel Composition Based on Machine Learning and Genetic Algorithm |
title_full | Optimal Design of the Austenitic Stainless-Steel Composition Based on Machine Learning and Genetic Algorithm |
title_fullStr | Optimal Design of the Austenitic Stainless-Steel Composition Based on Machine Learning and Genetic Algorithm |
title_full_unstemmed | Optimal Design of the Austenitic Stainless-Steel Composition Based on Machine Learning and Genetic Algorithm |
title_short | Optimal Design of the Austenitic Stainless-Steel Composition Based on Machine Learning and Genetic Algorithm |
title_sort | optimal design of the austenitic stainless-steel composition based on machine learning and genetic algorithm |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456822/ https://www.ncbi.nlm.nih.gov/pubmed/37629924 http://dx.doi.org/10.3390/ma16165633 |
work_keys_str_mv | AT liuchengcheng optimaldesignoftheausteniticstainlesssteelcompositionbasedonmachinelearningandgeneticalgorithm AT wangxuandong optimaldesignoftheausteniticstainlesssteelcompositionbasedonmachinelearningandgeneticalgorithm AT caiweidong optimaldesignoftheausteniticstainlesssteelcompositionbasedonmachinelearningandgeneticalgorithm AT yangjiahui optimaldesignoftheausteniticstainlesssteelcompositionbasedonmachinelearningandgeneticalgorithm AT suhang optimaldesignoftheausteniticstainlesssteelcompositionbasedonmachinelearningandgeneticalgorithm |