Cargando…

Network Pharmacology and Molecular Docking Analysis Exploring the Mechanism of Tripterygium wilfordii in the Treatment of Oral Lichen Planus

Background: Oral lichen planus (OLP) is an infrequent autoimmune disease of the oral mucosa, which affects up to 2% of the world population. An investigation of Tripterygium wilfordii’s mechanism of action for treating OLP was conducted, and a theoretical basis was provided for improving current tre...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Wenkai, Huang, Xu, Yang, Lin, Han, Wenjia, Zhu, Zhongqing, Wang, Yuanyin, Chen, Ran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456824/
https://www.ncbi.nlm.nih.gov/pubmed/37629739
http://dx.doi.org/10.3390/medicina59081448
Descripción
Sumario:Background: Oral lichen planus (OLP) is an infrequent autoimmune disease of the oral mucosa, which affects up to 2% of the world population. An investigation of Tripterygium wilfordii’s mechanism of action for treating OLP was conducted, and a theoretical basis was provided for improving current treatment regimens. Materials and Methods: We used a network pharmacological approach to gain insight into the molecular mechanism of Tripterygium wilfordii in the treatment of OLP. Then, potential protein targets between Tripterygium wilfordii and OLP were analyzed through a drug–target network. This was followed by KEGG enrichment analysis and Gene Ontology (GO) classification. Finally, for molecular docking, AutoDock Vina was used. Results: A protein–protein interaction (PPI) network was constructed by analyzing the common targets of a total of 51 wilfordii–OLP interactions from different databases. The GO and KEGG enrichment analyses showed that the treatment of OLP with Tripterygium wilfordii mainly involves lipopolysaccharide response, bacterial molecular response, positive regulation of cytokine production, and leukocyte proliferation, and the signaling pathways mainly include the AGE-RAGE, NF-κB, Toll-like receptor, IL-17, HIF-1, and TNF signaling pathways. The molecular docking results showed that β-sitosterol, kaempferol, hederagenin, and triptolide have a higher affinity for AKT1, TNF, CASP3, and PTGS2, respectively. Based on the CytoNCA analysis of common targets, 19 key targets, including AKT1, TNF, VEGFA, STAT3, CXCL8, PTGS2, TP53, and CASP3, and their connections were identified. Conclusions: Preliminarily, this study reveals that Tripterygium wilfordii interferes with OLP by interacting with multiple targets through multiple accesses, as validated by molecular docking.