Cargando…
Geometric framework to predict structure from function in neural networks
Neural computation in biological and artificial networks relies on the nonlinear summation of many inputs. The structural connectivity matrix of synaptic weights between neurons is a critical determinant of overall network function, but quantitative links between neural network structure and functio...
Autores principales: | Biswas, Tirthabir, Fitzgerald, James E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456994/ https://www.ncbi.nlm.nih.gov/pubmed/37635906 http://dx.doi.org/10.1103/physrevresearch.4.023255 |
Ejemplares similares
-
Drosophila uses a tripod gait across all walking speeds, and the geometry of the tripod is important for speed control
por: Chun, Chanwoo, et al.
Publicado: (2021) -
mSPD-NN: A Geometrically Aware Neural Framework for Biomarker Discovery from Functional Connectomics Manifolds
por: D’Souza, Niharika S., et al.
Publicado: (2023) -
Local Void vs Dark Energy: Confrontation with WMAP and Type Ia Supernovae
por: Alexander, Stephon, et al.
Publicado: (2007) -
Geometric algebra based recurrent neural network for multi-dimensional time-series prediction
por: Li, Yanping, et al.
Publicado: (2022) -
Classification of Geometric Forms in Mosaics Using Deep Neural Network
por: Ghosh, Mridul, et al.
Publicado: (2021)