Cargando…

Long-term agro-management strategies shape soil bacterial community structure in dryland wheat systems

Soil microbes play a crucial role in soil organic matter decomposition and nutrient cycling and are influenced by management practices. Therefore, quantifying the impacts of various agricultural management practices on soil microbiomes and their activity is crucial for making informed management dec...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Shikha, Singh, Surendra, Lukas, Scott B., Machado, Stephen, Nouri, Amin, Calderon, Francisco, Rieke, Elizabeth R., Cappellazzi, Shannon B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457325/
https://www.ncbi.nlm.nih.gov/pubmed/37626146
http://dx.doi.org/10.1038/s41598-023-41216-z
Descripción
Sumario:Soil microbes play a crucial role in soil organic matter decomposition and nutrient cycling and are influenced by management practices. Therefore, quantifying the impacts of various agricultural management practices on soil microbiomes and their activity is crucial for making informed management decisions. This study aimed to assess the impact of various management systems on soil bacterial abundance and diversity, soil enzyme activities and carbon mineralization potential in wheat-based systems. To accomplish this, soil samples from 0 to 15 cm depth were collected from ongoing long-term field trials in eastern Oregon region under wheat (Triticum aestivum L.)-fallow (WF), WF with different tillage (WT), wheat-pea (Pisum sativum L.) (WP), WF under different crop residue management (CR) and natural undisturbed/unmanaged grassland pasture (GP). These trials consisted of an array of treatments like tillage intensities, nitrogen rates, organic amendments, and seasonal residue burning. This study was a part of the Soil Health Institute’s North American Project to Evaluate Soil Health measurements (NAPESHM). Bacterial community structure was determined using amplicon sequencing of the V4 region of 16SrRNA genes and followed the protocols of the Earth Microbiome Project. In addition, extracellular enzyme activities, and carbon mineralization potential (1d-CO(2)) were measured. Among different trials, 1d-CO(2) in WT, WP, and CR studies averaged 53%, 51% and 87% lower than GP systems, respectively. Enzyme activities were significantly greater in GP compared to the other managements and followed similar trend as respiration. We observed higher evenness in GP and higher richness in spring residue burning treatment of CR study. Our results indicated that species evenness is perhaps a better indicator of soil health in comparison to other indices in dryland wheat systems.