Cargando…
Deep learning and wing interferential patterns identify Anopheles species and discriminate amongst Gambiae complex species
We present a new and innovative identification method based on deep learning of the wing interferential patterns carried by mosquitoes of the Anopheles genus to classify and assign 20 Anopheles species, including 13 malaria vectors. We provide additional evidence that this approach can identify Anop...
Autores principales: | Cannet, Arnaud, Simon-Chane, Camille, Akhoundi, Mohammad, Histace, Aymeric, Romain, Olivier, Souchaud, Marc, Jacob, Pierre, Sereno, Darian, Mouline, Karine, Barnabe, Christian, Lardeux, Frédéric, Boussès, Philippe, Sereno, Denis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457333/ https://www.ncbi.nlm.nih.gov/pubmed/37626130 http://dx.doi.org/10.1038/s41598-023-41114-4 |
Ejemplares similares
-
Wing Interferential Patterns (WIPs) and machine learning for the classification of some Aedes species of medical interest
por: Cannet, Arnaud, et al.
Publicado: (2023) -
Species identification of phlebotomine sandflies using deep learning and wing interferential pattern (WIP)
por: Cannet, Arnaud, et al.
Publicado: (2023) -
Wing Interferential Patterns (WIPs) and machine learning, a step toward automatized tsetse (Glossina spp.) identification
por: Cannet, Arnaud, et al.
Publicado: (2022) -
Pathogen Species Identification from Metagenomes in Ancient Remains: The Challenge of Identifying Human Pathogenic Species of Trypanosomatidae via Bioinformatic Tools
por: Sereno, Denis, et al.
Publicado: (2018) -
Anthropogenic Habitat Disturbance and Ecological Divergence between Incipient Species of the Malaria Mosquito Anopheles gambiae
por: Kamdem, Colince, et al.
Publicado: (2012)