Cargando…
An integrated deep-learning and multi-level framework for understanding the behavior of terrorist groups
Human security is threatened by terrorism in the 21st century. A rapidly growing field of study aims to understand terrorist attack patterns for counter-terrorism policies. Existing research aimed at predicting terrorism from a single perspective, typically employing only background contextual infor...
Autores principales: | Jiang, Dong, Wu, Jiajie, Ding, Fangyu, Ide, Tobias, Scheffran, Jürgen, Helman, David, Zhang, Shize, Qian, Yushu, Fu, Jingying, Chen, Shuai, Xie, Xiaolan, Ma, Tian, Hao, Mengmeng, Ge, Quansheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457427/ https://www.ncbi.nlm.nih.gov/pubmed/37636372 http://dx.doi.org/10.1016/j.heliyon.2023.e18895 |
Ejemplares similares
-
Exploring the worldwide impact of COVID-19 on conflict risk under climate change
por: Xie, Xiaolan, et al.
Publicado: (2023) -
Modelling armed conflict risk under climate change with machine learning and time-series data
por: Ge, Quansheng, et al.
Publicado: (2022) -
Exploring the direct and indirect impacts of climate variability on armed conflict in South Asia
por: Xie, Xiaolan, et al.
Publicado: (2022) -
Understanding the dynamics of terrorism events with multiple-discipline datasets and machine learning approach
por: Ding, Fangyu, et al.
Publicado: (2017) -
Understanding the Terrorist Mind
por: Bruneau, Emile
Publicado: (2016)