Cargando…
Dynamic applicability domain (dAD): compound–target binding affinity estimates with local conformal prediction
MOTIVATION: Increasing efforts are being made in the field of machine learning to advance the learning of robust and accurate models from experimentally measured data and enable more efficient drug discovery processes. The prediction of binding affinity is one of the most frequent tasks of compound...
Autores principales: | Oršolić, Davor, Šmuc, Tomislav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457664/ https://www.ncbi.nlm.nih.gov/pubmed/37594752 http://dx.doi.org/10.1093/bioinformatics/btad465 |
Ejemplares similares
-
Comprehensive machine learning based study of the chemical space of herbicides
por: Oršolić, Davor, et al.
Publicado: (2021) -
Binding Affinities Controlled by Shifting Conformational Equilibria: Opportunities and Limitations
por: Michielssens, Servaas, et al.
Publicado: (2015) -
Conformational Dynamics and Ligand Binding in the Multi-Domain Protein PDC109
por: Kim, Hyun Jin, et al.
Publicado: (2010) -
Multiple GPCR conformations and signalling pathways: implications for antagonist affinity estimates
por: Baker, Jillian G., et al.
Publicado: (2007) -
Conformational Selection and Submillisecond Dynamics of the Ligand-binding Domain of the N-Methyl-d-aspartate Receptor
por: Dolino, Drew M., et al.
Publicado: (2016)