Cargando…
Expression-Guided Deep Joint Learning for Facial Expression Recognition
In recent years, convolutional neural networks (CNNs) have played a dominant role in facial expression recognition. While CNN-based methods have achieved remarkable success, they are notorious for having an excessive number of parameters, and they rely on a large amount of manually annotated data. T...
Autores principales: | Fang, Bei, Zhao, Yujie, Han, Guangxin, He, Juhou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457757/ https://www.ncbi.nlm.nih.gov/pubmed/37631685 http://dx.doi.org/10.3390/s23167148 |
Ejemplares similares
-
Deep Joint Spatiotemporal Network (DJSTN) for Efficient Facial Expression Recognition
por: Jeong, Dami, et al.
Publicado: (2020) -
Automated Facial Expression Recognition Framework Using Deep Learning
por: Saeed, Saad, et al.
Publicado: (2022) -
Facial Expression Recognition of Instructor Using Deep Features and Extreme Learning Machine
por: Bhatti, Yusra Khalid, et al.
Publicado: (2021) -
The Effects of Facial Attractiveness and Familiarity on Facial Expression Recognition
por: Li, Jinhui, et al.
Publicado: (2019) -
A feature boosted deep learning method for automatic facial expression recognition
por: Podder, Tanusree, et al.
Publicado: (2023)