Cargando…
Physiological Changes and Transcriptomic Analysis throughout On-Tree Fruit Ripening Process in Persimmon (Diospyros kaki L.)
The involvement of effectors and transcriptional regulators in persimmon fruit maturation has been mostly approached by the literature under postharvest conditions. In order to elucidate the participation of these genes in the on-tree fruit maturation development, we have collected samples from seve...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457761/ https://www.ncbi.nlm.nih.gov/pubmed/37631107 http://dx.doi.org/10.3390/plants12162895 |
_version_ | 1785097002181197824 |
---|---|
author | Dorta, Tania Gil-Muñoz, Francisco Carrasco, Fany Zuriaga, Elena Ríos, Gabino Blasco, Manuel |
author_facet | Dorta, Tania Gil-Muñoz, Francisco Carrasco, Fany Zuriaga, Elena Ríos, Gabino Blasco, Manuel |
author_sort | Dorta, Tania |
collection | PubMed |
description | The involvement of effectors and transcriptional regulators in persimmon fruit maturation has been mostly approached by the literature under postharvest conditions. In order to elucidate the participation of these genes in the on-tree fruit maturation development, we have collected samples from seven persimmon germplasm accessions at different developmental stages until physiological maturation. This study has focused on the expression analysis of 13 genes involved in ethylene biosynthesis and response pathways, as well as the evolution of important agronomical traits such as skin colour, weight, and firmness. Results revealed different gene expression patterns, with genes up- and down-regulated during fruit development progression. A principal component analysis was performed to correlate gene expression with agronomical traits. The decreasing expression of the ethylene biosynthetic genes DkACO1, DkACO2, and DkACS2, in concordance with other sensing (DkERS1) and transduction genes (DkERF18), provides a molecular mechanism for the previously described high production of ethylene in immature detached fruits. On the other side, DkERF8 and DkERF16 are postulated to induce fruit softening and skin colour change during natural persimmon fruit ripening via DkXTH9 and DkPSY activation, respectively. This study provides valuable information for a better understanding of the ethylene signalling pathway and its regulation during on-tree fruit ripening in persimmon. |
format | Online Article Text |
id | pubmed-10457761 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104577612023-08-27 Physiological Changes and Transcriptomic Analysis throughout On-Tree Fruit Ripening Process in Persimmon (Diospyros kaki L.) Dorta, Tania Gil-Muñoz, Francisco Carrasco, Fany Zuriaga, Elena Ríos, Gabino Blasco, Manuel Plants (Basel) Article The involvement of effectors and transcriptional regulators in persimmon fruit maturation has been mostly approached by the literature under postharvest conditions. In order to elucidate the participation of these genes in the on-tree fruit maturation development, we have collected samples from seven persimmon germplasm accessions at different developmental stages until physiological maturation. This study has focused on the expression analysis of 13 genes involved in ethylene biosynthesis and response pathways, as well as the evolution of important agronomical traits such as skin colour, weight, and firmness. Results revealed different gene expression patterns, with genes up- and down-regulated during fruit development progression. A principal component analysis was performed to correlate gene expression with agronomical traits. The decreasing expression of the ethylene biosynthetic genes DkACO1, DkACO2, and DkACS2, in concordance with other sensing (DkERS1) and transduction genes (DkERF18), provides a molecular mechanism for the previously described high production of ethylene in immature detached fruits. On the other side, DkERF8 and DkERF16 are postulated to induce fruit softening and skin colour change during natural persimmon fruit ripening via DkXTH9 and DkPSY activation, respectively. This study provides valuable information for a better understanding of the ethylene signalling pathway and its regulation during on-tree fruit ripening in persimmon. MDPI 2023-08-08 /pmc/articles/PMC10457761/ /pubmed/37631107 http://dx.doi.org/10.3390/plants12162895 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dorta, Tania Gil-Muñoz, Francisco Carrasco, Fany Zuriaga, Elena Ríos, Gabino Blasco, Manuel Physiological Changes and Transcriptomic Analysis throughout On-Tree Fruit Ripening Process in Persimmon (Diospyros kaki L.) |
title | Physiological Changes and Transcriptomic Analysis throughout On-Tree Fruit Ripening Process in Persimmon (Diospyros kaki L.) |
title_full | Physiological Changes and Transcriptomic Analysis throughout On-Tree Fruit Ripening Process in Persimmon (Diospyros kaki L.) |
title_fullStr | Physiological Changes and Transcriptomic Analysis throughout On-Tree Fruit Ripening Process in Persimmon (Diospyros kaki L.) |
title_full_unstemmed | Physiological Changes and Transcriptomic Analysis throughout On-Tree Fruit Ripening Process in Persimmon (Diospyros kaki L.) |
title_short | Physiological Changes and Transcriptomic Analysis throughout On-Tree Fruit Ripening Process in Persimmon (Diospyros kaki L.) |
title_sort | physiological changes and transcriptomic analysis throughout on-tree fruit ripening process in persimmon (diospyros kaki l.) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457761/ https://www.ncbi.nlm.nih.gov/pubmed/37631107 http://dx.doi.org/10.3390/plants12162895 |
work_keys_str_mv | AT dortatania physiologicalchangesandtranscriptomicanalysisthroughoutontreefruitripeningprocessinpersimmondiospyroskakil AT gilmunozfrancisco physiologicalchangesandtranscriptomicanalysisthroughoutontreefruitripeningprocessinpersimmondiospyroskakil AT carrascofany physiologicalchangesandtranscriptomicanalysisthroughoutontreefruitripeningprocessinpersimmondiospyroskakil AT zuriagaelena physiologicalchangesandtranscriptomicanalysisthroughoutontreefruitripeningprocessinpersimmondiospyroskakil AT riosgabino physiologicalchangesandtranscriptomicanalysisthroughoutontreefruitripeningprocessinpersimmondiospyroskakil AT blascomanuel physiologicalchangesandtranscriptomicanalysisthroughoutontreefruitripeningprocessinpersimmondiospyroskakil |