Cargando…

Use of Raw Peach Gum as a Sustainable Additive for the Development of Water-Sensitive and Biodegradable Thermoplastic Starch Films

In this study, formulations of thermoplastic starch (TPS) with 5, 10, and 15 parts per hundred resin (phr) of raw peach gum (PG) were prepared by melt extrusion followed by injection molding to obtain standard specimens for characterization. In addition, biodegradable films were developed by compres...

Descripción completa

Detalles Bibliográficos
Autores principales: Juan-Polo, Andrea, Pavon, Cristina, de la Rosa-Ramírez, Harrison, López-Martínez, Juan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458062/
https://www.ncbi.nlm.nih.gov/pubmed/37631415
http://dx.doi.org/10.3390/polym15163359
Descripción
Sumario:In this study, formulations of thermoplastic starch (TPS) with 5, 10, and 15 parts per hundred resin (phr) of raw peach gum (PG) were prepared by melt extrusion followed by injection molding to obtain standard specimens for characterization. In addition, biodegradable films were developed by compression molding. It was determined that TPS with 5 phr and 10 phr of PG presented similar mechanical behavior to pure TPS after the processing. However, results indicated that adding PG in 10 phr slowed down the starch’s retrogradation, delaying the TPS structure’s stiffening. Moreover, the TPS–PG formulations presented improved solubility, which increased by 24% with 10 and 15 phr of PG compared to that shown for TPS. Additionally, PG enhanced the compostability of TPS, causing the sample to disintegrate in a shorter period. In conclusion, it was determined that raw PG added in 10 phr could be added as a sustainable additive to modify the biodegradation and water sensitivity of TPS without affecting its mechanical behavior after processing and delaying the retrogradation of the TPS structure, increasing its shelf life.